(:) Bonfiglioli

Riduttori

VF-W series

Wormgears

SUMMARY
Description
1 GENERAL INFORMATION 2
1.1 Symbols and units of measure 2
1.2 Introduction to the ATEX directives 4
1.2.1 Explosive atmosphere 4
1.2.2 European harmonised ATEX standards 4
1.2.3 Levels of protection for the various categories of equipment 5
1.2.4 Definition of groups (EN 1127-1) 5
1.2.5 Declaration of conformity 6
1.3 Use, installation and maintenance 6
1.4 Selecting the type of equipment 7
1.4.1 Selection procedure 7
1.4.2 Selecting a gear unit with IEC motor fitting 7
1.4.3 Selecting a speed reducer with solid input shaft 8
1.4.4 Post-selection checks 8
1.4.5 Operating conditions for ATEX-specified equipment 8
1.4.6 Service factor 9
2 WORM GEAR UNITS FOR POTENTIALLY EXPLOSIVE ATMOSPHERES 10
2.1 Construction of ATEX-specified equipment 10
2.2 Versions and mounting positions 11
2.2.1 VF Series 11
2.2.2 W Series 12
2.3 Ordering numbers 13
2.3.1 Options 13
2.4 Lubrication 14
2.5 Admissible overhung loads 15
2.5.1 Radial loads 16
2.5.2 Thrust loads 17
2.6 Gearbox rating charts 18
2.7 Motor availability 22
2.7.1 Motors not to IEC standard 23
2.8 Moment of inertia 24
2.9 Dimensions 28
2.10 Accessories 39
2.10.1 Plug-in output shaft 39
2.10.2 VF-interchangeable foot kits KA, KV 39
2.11 Customer's shaft 40
2.11.1 Manufacturing instructions 40

1 GENERAL INFORMATION

1.1 SYMBOLS AND UNITS OF MEASURE

An
f_{S}
$f_{T P}$
i
J_{c}
[N] The admissible thrust load represents the force which can be applied axially to the gear unit's shaft, along with the rated radial load.

- The service factor is a coefficient representing the severity of the duty for the operating cycle.
- The adjusting factor takes into account the influence of the ambient temperature in calculating the computational torque. This factor is relevant for worm gear units.
- The gear ratio is expressed as the relationship of the input shaft speed to the output shaft speed.

$$
i=\frac{n_{1}}{n_{2}}
$$

- The intermittence is defined as follows:

$$
I=\frac{t_{f}}{t_{f}+t_{r}} \cdot 100
$$

[$\left.\mathrm{Kgm}^{2}\right]$ Moment of inertia of the driven load.
[Kgm^{2}] Moment of inertia of the motor.
[Kgm^{2}] Moment of inertia of the gear unit.

- The load acceleration factor is used to calculate the service factor, and is defined as follows:

$$
K=\frac{J_{c}}{J_{m}}
$$

- The transmission factor is a computational parameter, proportional to the tension generated by an external transmission keyed to the gear unit shaft.

[Nm] Net output torque

[Nm] The rated torque at the output shaft.
The catalogue value is calculated for a service factor $f_{S}=1$.
[Nm] The application's required torque
This should always be less than or equal to the gear unit's rated torque Mn_{2}.
[Nm] Computational torque. This is a virtual parameter used to select the gear unit, by means of the equation:
\square
[min^{-1}] Shaft speed.
[kW] Rated power at the input shaft, calculated for a service factor $f_{S}=1$.
$\mathbf{P}_{\mathrm{R}} \quad[\mathrm{kW}] \quad$ The application's required power .
$\mathbf{R}_{\mathbf{C}} \quad[\mathrm{N}] \quad$ The computational radial load is generated by an external transmission and, for the input and output shafts respectively, can be calculated from the following equations:

$$
\mathrm{R}_{\mathrm{c} 1}[\mathrm{~N}]=\frac{2000 \cdot \mathrm{M}_{1}[\mathrm{Nm}] \cdot \mathrm{K}_{\mathrm{r}}}{\mathrm{~d}[\mathrm{~mm}]} \quad ; \quad \mathrm{R}_{\mathrm{o} 2}[\mathrm{~N}]=\frac{2000 \cdot \mathrm{M}_{2}[\mathrm{Nm}] \cdot \mathrm{K}_{\mathrm{r}}}{\mathrm{~d}[\mathrm{~mm}]}
$$

[N] The admissible radial load should always be more than or equal to the computational radial load. The point value is given in the catalogue for each unit's gear frame size and transmission ratio, and refers to the shaft's centre line.

Danger. May cause slight injury to persons.

1.2 INTRODUCTION TO THE ATEX DIRECTIVES

1.2.1 EXPLOSIVE ATMOSPHERE

Under the provisions of Directive 94/9/EC, an explosive atmosphere is defined as a mixture:
a. of flammable substances, in the form of gases, vapours, mists or dusts;
b. with air;
c. under atmospheric conditions;
d. in which, after ignition, the combustion spreads to the entire unburned mixture (it has to be noted that sometimes, mainly with dust, not always the whole quantity of the combustible material is consumed by the combustion).

An atmosphere which may potentially be transformed into an explosive atmosphere due to operating and/or ambient conditions is defined as a potentially explosive atmosphere. The products governed by Directive 94/9/EC are intended for use only in a potentially explosive atmosphere defined in this way.

1.2.2 EUROPEAN HARMONISED ATEX STANDARDS

The European Union has issued two harmonisation guidelines in the area of health and safety. These directives are known as ATEX 95 and ATEX 137.

Directive ATEX 95 (EU/94/9/EC) stipulates the minimum safety requirements for products intended for use in explosion risk areas within the member countries of the European Union. The directive also assigns such equipment to categories, which are defined by the directive itself.

Directive ATEX 137 (EU/99/92/EC) defines the minimum health and safety requirements for the workplace, for working conditions and for the handling of products and materials in explosion risk areas. The directive also divides the workplace into zones and defines the criteria for the application of product categories in said zones.
The following table describes the zones into which the user of a plant, in which an explosive atmosphere may occur, is required to divide the equipment application areas.

Zones Gaseous atmosphere G		Dusty atmosphere \mathbf{D}	Formation frequency of a potentially explosive atmosphere
0	20	Present continuously or for long periods	Type of danger
1	21	Likely to occur in normal operation occasionally	Permanent
2	22	Not likely to occur in normal operation but if it does occur	
will persist for short period only	Potential		

BONFIGLIOLI RIDUTTORI gear units selectedin this catalogue are suitable for installation in

 zones 1, 21, 2 and22, as highlightedin grey in the above table.As from 1 July 2003 the ATEX directives come into force throughout the entire European Union, and replace existing conflicting national and European laws on explosive atmospheres.
It should be emphasised that, for the first time, the directives also govern mechanical, hydraulic and pneumatic equipment, and not only electrical equipment as has been the case so far.
With regard to the Machinery Directive 2006/42/EC it should be noted that directive 94/9/EC is a set of extremely specific requirements dedicated to the dangers deriving from potentially explosive atmospheres, whereas the Machinery Directive contains only very general explosion safety requirements (Annex I).
Consequently, as regards protection against explosion in potentially explosive atmospheres, Directive 94/9/EC (ATEX 95) takes precedence over the Machinery Directive. The requirements of the Machinery Directive apply to all other risks regarding machinery.

1.2.3 LEVELS OF PROTECTION FOR THE VARIOUS CATEGORIES OF EQUIPMENT

The various categories of equipment must be able to operate in conformity with the Manufacturer's operational specifications, at certain defined levels of protection.

| Protection
 level | Category
 Group
 I | Group |
| :---: | :---: | :---: | :--- | :--- |
| II | | |\quad Type of protection \quad Operating conditions

1.2.4 DEFINITION OF GROUPS (EN 1127-1)

Group I Applies to equipment intended for use underground in parts of mines and those parts of surface installations of such mines, liable to be endangered by firedamp and/or combustible dust.

Group II Applies to equipment intended for use in other places liable to be endangered by explosive atmospheres.

BONFIGLIOLI RIDUTTORI products may not therefore be installed in mines, classified in Group I and in Group II, category 1.

To summarise, the classification of equipment into groups, categories and zones is illustrated in the table below, whereby the availability of BONFIGLIOLI RIDUTTORI products is highlighted in grey.

Group	mines, firedamp		II other potentially explosive areas (gas, dust)					
Category	M1	M2				2		(
Atmosphere ${ }^{(1)}$			G	D	G	D	G	D
Zone			0	20	1	21	2	22
Type of protection gear unit					c, k	c, k	c, k	c, k
Type of protection motor					d, e	IP6X + temp.max	$\mathrm{n}(\mathrm{A})$	IP5X o IP6X + temp. max

${ }^{(1)} \mathbf{G}=$ gas $\mathbf{D}=$ dust

This catalogue describes BONFIGLIOLI RIDUTTORI gear units, intended for use in potentiallyexplosive atmospheres, with limitation to categories 2 and 3.
The products described herein conform to the minimum safety requirements of European Directive 94/9/EC, which is part of the directives known as ATEX (ATmosphères EXplosibles).

1.2.5 DECLARATION OF CONFORMITY

The Declaration of Conformity, is the document which attests to the conformity of the product to Directive 94/9/EC. The validity of the Declaration is bound to observance of the instructions given in the User, Installation and Service Manual for safe use of the product throughout its service life.
This can be downloaded from www.bonfiglioli.com where the manual is available in PDF format in a number of languages.
The instructions regarding ambient conditions are of particular importance inasmuch as failure to observe them during operation of the product renders the certificate null and void.
In case of doubt regarding the validity of the certificate of conformity, contact the BONFIGLIOLI RIDUTTORI technical department.

1.3 USE, INSTALLATION AND MAINTENANCE

The instructions for safe storage, handling and use of the product are given in the unit's User, Installation and Service Manual.

This can be downloaded from www.bonfiglioli.com where the manual is available in PDF format in a number of languages.
This document must be kept in a suitable place, in the vicinity of the installed gear unit, as a reference for all persons authorised to work with or on the product throughout its service life.

The Manufacturer reserves the right to modify, supplement or improve the Manual, in the interests of the User.
1.4 SELECTING THE TYPE OF EQUIPMENT

1.4.1 SELECTION PROCEDURE:

Determine the application service factor fs in relation to the type of load (K factor), number of starts per hour Zr and hours of operation per day.

Now determine the power required at the motor shaft:

$$
P_{\mathrm{rl}}=\frac{M_{12} \cdot \mathrm{n}_{2}}{9550 \cdot \eta_{\mathrm{d}}}[\mathrm{~kW}]
$$

The efficiency value « η_{d} » can be determined as follows (approximately):

The selection procedure now depends on the type of gear unit, as follows:
a. gear unit equipped with IEC motor fitting
b. gear unit equipped with solid input shaft.

Proceed as follows:

1.4.2 SELECTING A GEAR UNIT WITH IEC MOTOR FITTING

a. Determine service factor $f \mathbf{f}$ as formerly specified.
b. with reference to the rating charts, identify the gear unit which, for the required speed n_{2}, provides a rated power Pn_{1} such that:
\square
c. Select an electric motor rated:
\square
d. Finally, check that the motor/gear unit combination generates a safety factor equal to or greater than the service factor for the application in question, in other words:

$$
\mathrm{S}=\frac{\mathrm{P}_{\mathrm{n} 1}}{\mathrm{P}_{1}} \geq \mathrm{f}_{\mathrm{s}}
$$

1.4.3 SELECTING A SPEED REDUCER WITH SOLID INPUT SHAFT

- Calculate the value of the computational torque:

$$
M c_{2}=M r_{2} \times f_{s} \times f_{t p}
$$

$\mathbf{f}_{\text {tp }}$				
Helical gear units $\mathrm{C}, \mathrm{A}, \mathrm{F}, \mathrm{S}$	Worm gear units VF, W			
$\mathrm{f}_{\mathrm{tp}}=1$	Type of load		Ambient temperature $\left[{ }^{\circ} \mathrm{C}\right]$	
		20°	30°	40°

- for the speed n_{2} closest to that required, select the gear unit with a rated torque $M n_{2}$ equal to or greater than the computational torque Mc_{2}, in other words:

$$
\mathrm{M}_{\mathrm{n} 2} \geq \mathrm{M}_{\mathrm{c} 2}
$$

1.4.4 POST-SELECTION CHECKS

Once the gear unit or the gear unit with IEC motor fitting has been selected, we recommend checkin the selection as follows:

- Momentary peak torque

The momentary peak torque is of the order of 200% of the rated torque Mn_{2}. Check that the point value of the peak torque satisfies this condition and equip the installation with a torque limiter if necessary.

- Radial load

The catalogue gives the values of the maximum admissible radial load for both the input shaft « $R n_{1}$ " and the output shaft « Rn_{2} ". These values refer to a load applied at the shafts' centre lines and must always be greater than the actually applied load. See paragraph: Radial loads.

- Thrust load

Check that the thrust component of the load does not exceed the maximum admissible value as given in the paragraph: Thrust loads.

1.4.5 OPERATING CONDITIONS FOR ATEX-SPECIFIED EQUIPMENT

- Ambient temperature $-20^{\circ} \mathrm{C}<$ to $<+40^{\circ} \mathrm{C}$.
- The gear unit must be installed in the mounting position specified in the order and given on the nameplate. Any deviation from this requirement must be approved in advance by BONFIGLIOLI RIDUTTORI.
- Do not under any circumstances install the gear unit with its shaft in an inclined orientation, unless previously authorised to do so by the BONFIGLIOLI RIDUTTORI Technical Service Department.
- The speed of the motor mounted to the gear unit must not exceed $\mathrm{n}=1500 \mathrm{~min}-1$.
- Should the gearbox be connected to an inverter driven motor the latter must be explicitly suitable for the purpose and used in full compliance with the instructions set forth by the manufacturer. Under no circumstances the setting of the inverter shall allow the motor to exceed the maximum speed permitted ($1500 \mathrm{~min}-1$) or overload the gearbox itself.
- All the instructions in the User Manual (www.bonfiglioli.com) regarding installation, use and routine maintenance of the unit must be followed in full.

1.4.6 SERVICE FACTOR - [$\left.f_{s}\right]$

This factor is the numeric value describing reducer service duty. It takes into consideration, with unavoidable approximation, daily operating conditions, load variations and overloads connected with reducer application.
In the graph below, after selecting proper "daily working hours" column, the service factor is given by intersecting the number of starts per hour and one of the K1, K2 or K3 curves.
K_ curves are linked with the service nature (approximately: uniform, medium and heavy) through the acceleration factor of masses K , connected to the ratio between driven masses and motor inertia values.
Regardless of the value given for the service factor, we would like to remind that in some applications, which for example involve lifting of parts, failure of the reducer may expose the operators to the risk of injuries.
If in doubt, please contact our Technical Service Department.

Acceleration factor of masses - [K]

This parameter serves for selecting the right curve for the type of load. The value is given by the following ratio:

$$
K=\frac{J_{c}}{J_{m}}
$$

where:
$\mathbf{J}_{\mathbf{c}}$ moment of inertia of driven masses referred to motor shaft $\mathbf{J}_{\mathbf{m}}$ moment of inertia of motor

2 WORM GEAR UNITS FOR POTENTIALLY EXPLOSIVE ATMOSPHERES
 2.1 CONSTRUCTION OF ATEX-SPECIFIED EQUIPMENT

- Equipped with service plugs for periodic lubricant level checks.
- Factory-charged with lubricant, depending on the mounting position specified in the order. (*)
- Fluoro elastomer seal rings as standard.
- Side surfaces machined and tapped provide for extra mounting flexibility.
- No plastic component parts.
- Nameplate indication of the product category and type of protection.

${ }^{(*)}$ With the exception of gear units: W110 in mounting positions V5 and V6

2.2 VERSIONS AND MOUNTING POSITIONS

2.2.1 VF SERIES

1-2 Flange location
2.2.2 W SERIES

1-2 Flange location

2.3 ORDERING NUMBERS

GEAR FRAME SIZE
VF: 30, 44, 49 ; W: 63, 75, 86, 110
PRODUCT SERIES: VF, W = worm gearbox

2.3.1 OPTIONS

The applicability of the various options is indicated in the technical data tables according to the specific configuration and gear ratio.

2D3D-160 The gear unit can be installed in zones 21 and 22 (categories 2D and 3D).
The unit's surface temperature is less than $160^{\circ} \mathrm{C}$.

2D3D-130

The gear unit can be installed in zones 21 and 22 (categories 2D and 3D).
The unit's surface temperature is less than $130^{\circ} \mathrm{C}$.
2G3G-T3
The gear unit can be installed in zones 1 and 2 (categories 2G and 3G).
The temperature class is T3 (max. $200^{\circ} \mathrm{C}$).
2G3G-T4 The gear unit can be installed in zones 1 and 2 (categories 2G and 3G).
The temperature class is T 4 (max. $135^{\circ} \mathrm{C}$).

2.4 LUBRICATION

The gear units are factory-charged with long-life synthetic lubricant in the quantity suitable for the mounting position specified in the order.
For transportation purposes these units are equipped with closed filler plugs. A vented plug, which the User must replace before putting the unit into service, is supplied along with each unit.
For a preliminary oil level check, insert a dipstick in the yellow filler plug opening as specified in the unit's User Manual.

Lubricant charge [litres] for VF gear units:						
	B3	B6	B7	B8	V5	V6
VF 30	0.045	0.045	0.045	0.045	0.045	0.045
VF 44	0.075	0.075	0.075	0.075	0.075	0.075
VF 49	0.12	0.12	0.12	0.12	0.12	0.12

SHELL OMALA S4 WE 320

Lubricant charge [litres] for W gear unit							
	i $=$	B3	B6	B7	B8	V5	V6
W63	7, 10, 12, 15	0.31	0.31	0.31	0.31	0.31	0.31
63	19, 24, 30, 38, 45, 64	0.38	0.38	0.38	0.38	0.38	0.38
	7, 10, 15	0.48	0.48	0.48	0.48	0.48	0.48
W75	30, 40	0.52	0.52	0.52	0.52	0.52	0.52
	20, 25, 50, 60, 80, 100	0.56	0.56	0.56	0.56	0.56	0.56
	7, 10, 15	0.64	0.64	0.64	0.64	0.64	0.64
W86	30	0.73	0.73	0.73	0.73	0.73	0.73
	20, 23, 40, 46, 56, 64, 80, 100	0.90	0.90	0.90	0.90	0.90	0.90
	input	B3	B6	B7	B8	V5	V6
	P80...P132	1.6	1.7	1.7	1.9	1.9	1.8
W110*	HS $7 \leqslant \mathrm{i} \leqslant 15$	1.6	1.7	1.7	1.9	1.9	1.8
	HS $20 \leqslant \mathrm{i} \leqslant 100$	2.8	1.7	1.7	1.9	1.9	1.8

*Worm gears type W110 configured for mounting positions V5 and V6 will be supplied unlubricated.

Filling/breather plug Level plug (7) Drain plug	W 63, W 75, W86	W 110
B3		
B6	(2)협	
B7		(
B8		
V5		
V6		

2.5 ADMISSIBLE OVERHUNG LOADS

2.5.1 RADIAL LOADS

2.5.1.1 CALCULATING THE RESULTING OVERHUNG LOAD

External transmissions keyed onto input and/or output shaft generate loads that act radially onto same shaft.
Resulting shaft loading must be compatible with both the bearing and the shaft capacity.
Namely shaft loading ($R_{c 1}$ for input shaft, $R_{c 2}$ for output shaft), must be equal or lower than admissible overhung load capacity for shaft under study ($R_{n 1}$ for input shaft, $R_{n 2}$ for output shaft). OHL capability listed in the rating chart section.
In the formulas given below, index (1) applies to parameters relating to input shaft, whereas index (2) refers to output shaft.
The load generated by an external transmission can be calculated with close approximation by the following equation:

$\mathrm{R}_{\mathrm{c}}=\frac{2000 \times \mathrm{M} \times \mathrm{K}_{\mathrm{r}}}{\mathrm{d}}$	
$\mathrm{K}_{\mathrm{r}}=1$	
$\mathrm{~K}_{\mathrm{r}}=1.25$	
$\mathrm{~K}_{\mathrm{r}}=1.5-2.0$	
$\mathrm{M}[\mathrm{Nm}]$	

2.5.1.2 OVERHUNG LOADING VERIFICATION

2.5.1.3 LOAD LOCATION FACTOR

	a	b	c
VF 30	60	45	1
VF 44	71	51	1
VF 49	99	69	1
W 63	132	102	1
W 75	139	109	1
W 86	149	119	1
W 100	173	136	1

2.5.2 THRUST LOADS $A n_{1}, A n_{2}$

Permissible thrust loads on input $\left[A_{n 1}\right]$ and output $\left[A_{n 2}\right]$ shafts are obtained from the radial loading for the shaft under consideration $\left[R_{n 1}\right]$ and $\left[R_{n 2}\right]$ through the following equation:

$$
\begin{aligned}
& A_{n 1}=R_{n 1} \cdot 0,2 \\
& A_{n 2}=R_{n 2} \cdot 0,2
\end{aligned}
$$

The thrust loads calculated through these formulas apply to thrust forces occurring at the same time as rated radial loads. In the only case that no overhung load acts on the shaft the value of the admissible thrust load $\left[A_{n}\right]$ amounts to 50% of rated $\mathrm{OHL}\left[R_{n}\right]$ on same shaft.
Where thrust loads exceed permissible value or largely prevail over radial loads, contact Bonfiglioli Riduttori for an in-depth analysis of the application.
2.6 GEARBOX RATING CHARTS

Selection example

n_{2}	η_{s}	η_{c}		$\mathrm{n}_{1}=1400$ min-1				$\mathrm{n}_{1}=1400$ min-1				
			(0)	$\mathrm{Mn}_{\mathrm{n} 2}$		$\mathrm{R}_{\mathrm{n} 2}$		$\mathrm{M}_{\mathrm{n} 2}$ Nm	$P_{n 1}$ kW	$\mathbf{R}_{\mathrm{n} 1}$	$\mathrm{R}_{\mathrm{n} 2}$ N	

(1)

The gear unit can be installed

In zones 21 and 22 with surface temperature limit of $160^{\circ} \mathrm{C}$

In zones 1 and 2 with temperature class limit T3 $\left(200^{\circ} \mathrm{C}\right)$
(2)

The gear unit can be installed

In zones 21 and 22 with surface temperature limit of $130^{\circ} \mathrm{C}$

In zones 21 and 22 with surface temperature limit of $160^{\circ} \mathrm{C}$

In zones 1 and 2 with temperature class limit T4 $\left(135^{\circ} \mathrm{C}\right)$

In zones 1 and 2 with temperature class limit T3 ($200^{\circ} \mathrm{C}$)

VF 30

	$\begin{gathered} \mathrm{n}_{2} \\ \mathrm{~min}-1 \end{gathered}$	η_{s} \%	η_{d} \%			$\mathrm{n}_{1}=1400 \mathrm{~min}-1$				$\mathrm{n}_{1}=1400$ min-1				
						$\begin{gathered} \mathbf{M}_{\mathrm{n} 2} \\ \mathrm{Nm} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{n} 1} \\ \mathrm{~kW} \\ \hline \end{gathered}$	$\mathrm{R}_{\mathrm{n} 2}$ N		$\begin{gathered} \mathbf{M}_{\mathrm{n} 2} \\ \mathrm{Nm} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{n} 1} \\ \mathrm{~kW} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{R}_{\mathbf{n} 1} \\ \mathrm{~N} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{n} 2} \\ \mathrm{~N} \end{gathered}$	-
VF 30_7	200	69	84			10	0.25	630						
VF 30_10	140	64	81			10	0.18	770						
VF 30_15	93	56	76			10	0.13	910						
VF 30_20	70	51	73			10	0.10	1030						34
VF 30_30	47	41	65			10	0.08	1200						
VF 30_40	35	36	60			10	0.06	1340						
VF 30_60	23	29	51			11	0.05	1540						
VF 30_70	20.0	26	48			11	0.05	1600						

VF 44
30 Nm

VF 49

48 Nm

	$\begin{gathered} \mathbf{n}_{\mathbf{2}} \\ \min -1 \end{gathered}$	$\eta_{\mathbf{s}}$$\%$	η_{d}\%			$\mathrm{n}_{1}=1400 \mathrm{~min}-1$					$\mathrm{n}_{1}=1400 \mathrm{~min}-1$				
						$M_{n 2}$ Nm	$P_{n 1}$ kW	$\begin{gathered} \mathbf{R}_{\mathrm{n} 2} \\ \mathrm{~N} \end{gathered}$			$M_{n 2}$ Nm	$P_{n 1}$ kW	$\mathbf{R n}_{\mathrm{n}}$ N	$\mathbf{R n}_{\mathrm{n}}$ N	\square
VF 49_7	200	70	86			41	1.00	1140			41	1.00	400	1140	
VF 49_10	140	65	84			42	0.73	1390			42	0.73	400	1390	
VF 49_14	100	59	81			42	0.54	1630		$\stackrel{セ}{\vdash}$	42	0.54	400	1630	
VF 49_18	78	55	78			43	0.45	1810		O	43	0.45	400	1810	
VF 49_24	58	50	75	-		44	0.36	2050	-	N	44	0.36	400	2050	
VF 49_28	50	43	71	N్ల్స		42	0.31	2170	N్ర	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	42	0.31	400	2170	34
VF 49_36	39	39	67	1		43	0.26	2400		는	43	0.26	400	2400	
VF 49_45	31	35	63	$\stackrel{m}{i}$		44	0.23	2620	$\stackrel{m}{\Gamma}$	$\stackrel{\sim}{\mathrm{N}}$	44	0.23	400	2620	
VF 49_60	23.3	30	58	O		45	0.19	2920	مِ		45	0.19	400	2920	
VF 49_70	20.0	28	54			48	0.19	3090	\sim		48	0.19	400	3090	

W 63

W 75

W 86 350 Nm

	$\begin{gathered} \mathbf{n}_{2} \\ \min -1 \\ \hline \end{gathered}$	$\eta_{s}$$\%$	η_{d}\%		$\mathrm{n}_{1}=1400 \mathrm{~min}-1$				$\mathrm{n}_{1}=1400$ min-1				
					$\begin{gathered} \mathbf{M}_{\mathrm{n} 2} \\ \mathrm{Nm} \end{gathered}$	$P_{n 1}$ kW	$\begin{gathered} \mathbf{R}_{\mathrm{n} 2} \\ \mathrm{~N} \end{gathered}$		$\mathbf{M}_{\mathrm{n} 2}$ Nm	Pn1 kW	$\begin{gathered} \mathrm{R}_{\mathrm{n} 1} \\ \mathrm{~N} \\ \hline \end{gathered}$	$\mathbf{R n}_{\mathrm{n}}$ N	
W 110_7	200	71	89		500	11.8	4440	$\begin{aligned} & \text { 饣్ } \\ & \text { ט్ల్ల } \end{aligned}$	500	11.8	1200	4440	34
W 110_10	140	67	87		550	9.3	5540		550	9.3	1200	5540	
W 110_15	93	60	84		600	7.0	6840		600	7.0	1200	6840	
W 110_20	70	61	84		570	5.0	8000		570	5.0	1200	8000	
W 110_23	61	59	83		540	4.1	8000		540	4.1	1200	8000	
W 110_30	47	45	77		700	4.4	8000		700	4.4	1200	8000	
W 110_40	35	46	76		670	3.2	8000		670	3.2	1200	8000	
W 110_46	30	44	74		600	2.6	8000		600	2.6	1200	8000	
W 110_56	25.0	41	72		600	2.2	8000		600	2.2	1200	8000	
W 110_64	21.9	38	70		530	1.7	8000		530	1.7	1200	8000	
W 110_80	17.5	34	66		470	1.3	8000		470	1.3	1200	8000	
W 110_100	14.0	30	62		445	1.1	8000		445	1.1	1201	8000	

2.7 MOTOR AVAILABILITY

Please be aware that motor-gearbox availability resulting from chart below are purely based on geometrical compatibility.

When selecting a gearbox with IEC motor adapter, refer to procedure specified at chapter 1.4.

				$\sqrt{\text { IEC }}$	(IM B5) (IM B14)	$-n_{1}=14$	$\min -1$		
	Pr1 (*)	0.09 kW	0.25 kW	0.55 kW	1.1 kW	1.85 kW	3 kW	4 kW	9.2 kW
	(e)	P56	P63	P71	P80	P90	P100	P112	P132
VF 30	$\mathrm{i}=$	7_70	7_60						
VF 44			7_70	7_35					
VF 49			7_70	7_60	7_28				
W 63				7_64	7_64	7_30			
W 75				7_100	7_100	7-100	7_100	7_100	
W 86				7_100	7_100	7-100	7_100	7_100	
W 110					7_100	7_100	7_100	7_100	7_100

(*) $P_{n 1}=$ maximum installable power on the input P_{-}
\square
Combinations are generallyavailable with both IM B5 and IM B14 flanged motors.
Combinations marked in greyboxes can onlybe achieved through IM B5 flanged motors.

2.7.1 MOTORS NOT TO IEC STANDARD

For coupling with non-normalized electric motors, the motor coupling end of VF and W speed reducers may be configured with hybrid (i.e., non IEC) input shaft and flange combinations.
Shaft and flange combinations are illustrated below. The table shows the diameters in millimetres for each selection.

The following table lists available configurations, as well as their limited ranges of gear ratios.

Standard arrangement

The table above report possible configurations strictly based on geometric criteria. To determine the compatibility of a motor-gear unit assembly in terms of mechanical factors, double-check the selected configuration against the rating charts for power/speed.
Be sure to avoid those combinations that yield a safety factor $S<0.9$.

2.8 MOMENT OF INERTIA

The following charts indicate moment of inertia values $J_{r}\left[\mathrm{kgm}^{2}\right]$ referred to the gear unit high speed shaft. A key to the symbols used follows:
? Values under this symbol refer to gearboxes with IEC motor adaptor (IEC size...).
\qquad

This symbol refers to gearbox values.

V= 30

V $=4$

		i	$\mathrm{J}\left(\cdot 10^{-4}\right)\left[\mathrm{Kgm}^{2}\right]$					
			HS					
$\begin{aligned} & \ddagger \\ & \mathbf{~} \end{aligned}$	VF 44_7		7	0.29	0.27	-	-	0.18
	VF 44_10	10	0.24	0.22	-	-	0.14	
	VF 44_14	14	0.23	0.21	-	-	0.12	
	VF 44_20	20	0.19	0.18	-	-	0.09	
	VF 44_28	28	0.21	0.19	-	-	0.11	
	VF 44_35	35	0.19	0.18	-	-	0.09	
	VF 44_46	46	0.18	-	-	-	0.08	
	VF 44_60	60	0.17	-	-	-	0.07	
	VF 44_70	70	0.17	-	-	-	0.07	
	VF 44_100	100	0.17	-	-	-	0.07	

VF 49

		i	$\mathrm{J}\left(\cdot 10^{-4}\right)\left[\mathrm{Kgm}^{2}\right]$						
		P63	P71						
$\begin{aligned} & 8 \\ & \underset{子}{8} \\ & \boldsymbol{8} \end{aligned}$	VF 49_7		7	0.69	0.67	0.61	-	-	0.42
	VF 4910	10	0.61	0.60	0.53	-	-	0.34	
	VF 49_14	14	0.58	0.57	0.5	-	-	0.31	
	VF 49_18	18	0.54	0.53	0.46	-	-	0.27	
	VF 49_24	24	0.52	0.5	0.44	-	-	0.24	
	VF 49_28	28	0.56	0.54	0.48	-	-	0.28	
	VF 49_36	36	0.53	0.51	-	-	-	0.25	
	VF 49_45	45	0.51	0.49	-	-	-	0.24	
	VF 49_60	60	0.50	0.48	-	-	-	0.23	
	VF 49_70	70	0.50	-	-	-	-	0.22	
	VF 49_80	80	0.49	-	-	-	-	0.22	
	VF 49_100	100	0.49	-	-	-	-	0.22	

W 63

		i	$\mathrm{J}\left(\cdot 10^{-4}\right)\left[\mathrm{Kgm}^{2}\right]$							
		P63	P71	P80	P90					
$\begin{aligned} & \boldsymbol{m} \\ & \mathbf{3} \\ & 3 \end{aligned}$	W 63_7		7	-	3.5	3.5	3.5	-	-	3.6
	W 63_10	10	-	3.2	3.3	3.2	-	-	3.3	
	W 63_12	12	-	3.1	3.2	3.1	-	-	3.3	
	W 63_15	15	-	3.0	3.1	3.0	-	-	3.2	
	W 63_19	19	-	2.9	3.0	2.9	-	-	3.1	
	W 63_24	24	-	2.9	3.0	2.9	-	-	3.0	
	W 63_30	30	-	2.9	3.0	2.9	-	-	3.1	
	W 63_38	38	-	2.9	3.0	2.9	-	-	3.0	
	W 63_45	45	-	2.9	2.9	2.9	-	-	3.0	
	W 63_64	64	-	2.8	2.9	2.8	-	-	3.0	
	W 63_80	80	-	2.8	2.9	2.8	-	-	3.0	
	W 63_100	100	-	2.8	2.9	2.8	-	-	2.9	

W 75

		i	$\mathrm{J}\left(\cdot 10^{-4}\right)\left[\mathrm{Kgm}^{2}\right]$							
		P63	P71	P80	P90	P100	P112			
$\begin{aligned} & \text { م } \\ & 3 \end{aligned}$	W 75 _7		7	-	6.9	7.0	6.9	6.9	6.9	7.3
	W 75_10	10	-	6.4	6.4	6.3	5.7	5.7	6.8	
	W 75_15	15	-	6.1	6.1	6.0	5.3	5.3	6.5	
	W 75_20	20	-	5.9	5.9	5.9	5.2	5.2	6.3	
	W 75_25	25	-	6.0	6.0	5.9	5.2	5.2	6.3	
	W 75_30	30	-	5.9	5.9	5.9	5.2	5.2	6.3	
	W 75_40	40	-	5.9	5.9	5.8	5.2	5.2	6.3	
	W 75_50	50	-	5.9	5.9	5.8	5.1	5.1	6.2	
	W75_60	60	-	5.8	5.9	5.8	5.1	5.1	6.2	
	W 75_80	80	-	5.8	5.8	5.8	5.1	5.1	6.2	
	W 75_100	100	-	5.8	5.8	5.7	5.0	5.0	6.2	

W 86

		i	$\mathrm{J}\left(\cdot 10^{-4}\right)\left[\mathrm{Kgm}^{2}\right]$							
		P63	P71	P80	P90	P100	P112			
$\begin{aligned} & \infty \\ & \infty \\ & 3 \end{aligned}$	W 86_7		7	-	9.7	9.7	9.6	9.6	9.6	10
	W 86_10	10	-	8.4	8.4	8.3	7.7	7.7	8.9	
	W 86_15	15	-	7.7	7.7	7.7	7.0	7.0	8.2	
	W 86_20	20	-	6.9	7.0	6.9	6.2	6.2	7.4	
	W 86_23	23	-	6.8	6.9	6.8	6.1	6.1	7.3	
	W 86_30	30	-	7.3	7.3	7.3	6.6	6.6	7.8	
	W 86_40	40	-	6.7	6.7	6.6	6.0	6.0	7.2	
	W 86_46	46	-	6.7	6.7	6.6	5.9	5.9	7.1	
	W 86_56	56	-	6.6	6.7	6.6	5.9	5.9	7.1	
	W 86_64	64	-	6.6	6.6	6.5	5.9	5.9	7.1	
	W 86_80	80	-	6.6	6.6	6.5	5.9	5.9	7.1	
	W 86_100	100	-	6.4	6.5	6.4	5.7	5.7	6.9	

W 110

		i	J $\left(\cdot 10^{-4}\right)\left[\mathrm{Kgm}^{2}\right]$								
		P63	P71	P80	$\begin{aligned} & \sqrt{4}] \\ & \mathbf{P 9 0} \\ & \hline \end{aligned}$	P100	P112	P132			
$\frac{0}{5}$	W 110_7		7	-	-	23	23	23	23	28	23
	W 110_10	10	-	-	19	19	24	24	24	20	
	W 110_15	15	-	-	17	17	22	22	22	17	
	W 110_20	20	-	-	14	14	19	19	19	15	
	W 110_23	23	-	-	14	14	19	19	19	15	
	W 110_30	30	-	-	16	16	20	20	20	16	
	W 110_40	40	-	-	14	14	19	19	19	14	
	W 110_46	46	-	-	13	13	18	18	18	14	
	W 110_56	56	-	-	13	13	18	18	18	14	
	W 110_64	64	-	-	13	13	18	18	18	14	
	W 110_80	80	-	-	13	13	18	18	18	14	
	W 110_100	100	-	-	13	13	18	18	18	14	

2.9 DIMENSIONS

VF 30...P(IEC)

VF 30...P(IEC)

$V=30$										
(0)	1	M	M1	M2	N	N1	N2	N3	N4	Kg
VF 30	P56 B5	9	10.4	3	120	100	80	7	7	1.1
VF 30	P56 B14	9	10.4	3	80	65	50	7	5.5	
VF 30	P63 B5	11	12.8	4	140	115	95	8	9.5	
VF 30	P63 B14	11	12.8	4	90	75	60	6	5.5	

VF 44...P(IEC)

VF 44...P(IEC)

F

OUTPUT

(0)	11	M	M1	M2	N	N1	N2	N3	N4	$\stackrel{\mathrm{Kg}}{ }$
VF 44	P63 B5	11	12.8	4	140	115	95	10	9.5	2.0
VF 44	P71 B5	14	16.3	5	160	130	110	10	9.5	
VF 44	P63 B14	11	12.8	4	90	75	60	8	5.5	
VF 44	P71 B14	14	16.3	5	105	85	70	10	7	

Riduttori

VF 49...P(IEC)

VF 49...P(IIEC)

F

U

OUTPUT

$V=49$										
(o)	1	M	M1	M2	N	N1	N2	N3	N4	$\frac{\mathrm{Kg}}{}$
VF 49	P63 B5	11	12.8	4	140	115	95	10.5	9.5	3.0
VF 49	P71 B5	14	16.3	5	160	130	110	10.5	9.5	
VF 49	P80 B5	19	21.8	6	200	165	130	10	11.5	
VF 49	P63 B14	11	12.8	4	90	75	60	7	6	
VF 49	P71 B14	14	16.3	5	105	85	70	10.5	6.5	
VF 49	P80 B14	19	21.8	6	120	100	80	10	7	

W 63...P(IEC)

W 63

	$\sqrt{\\|}$	M	M1	M2	N	N1	N2	N3	N4	P	Kg
W 63	P71 B5	14	16.3	5	160	130	110	11	9	95	6.3
W 63	P80 B5	19	21.8	6	200	165	130	12	11.5	102	6.5
W 63	P90 B5	24	27.3	8	200	165	130	12	11.5	102	6.4
W 63	P71 B14	14	16.3	5	105	85	70	11	6.5	95	6.1
W 63	P80 B14	19	21.8	6	120	100	80	11	6.5	102	6.3
W 63	P90 B14	24	27.3	8	140	115	95	11	8.5	102	6.3

Riduttori

W 75...P(IEC)

U

UF

INPUT

STANDARD OUTPUT

ON REQUEST OUTPUT

W 75											
(8)	\Downarrow	M	M1	M2	N	N1	N2	N3	N4	P	Kg
W 75	P71 B5	14	16.3	5	160	130	110	11	9	112	9.5
W 75	P80 B5	19	21.8	6	200	165	130	12	11.5	112	9.7
W 75	P90 B5	24	27.3	8	200	165	130	12	11.5	112	9.6
W 75	P100 B5	28	31.3	8	250	215	180	13	12.5	120	9.7
W 75	P112 B5	28	31.3	8	250	215	180	13	12.5	120	9.7
W 75	P80 B14	19	21.8	6	120	100	80	7.5	6.5	112	9.4
W 75	P90 B14	24	27.3	8	140	115	95	7.5	8.5	112	9.4
W 75	P100 B14	28	31.3	8	160	130	110	10	8.5	120	9.5
W 75	P112 B14	28	31.3	8	160	130	110	10	8.5	120	9.5

W86..P(IEC)

W 86

	\\|	M	M1	M2	N	N1	N2	N3	N4	P	Kg
W 86	P71 B5	14	16.3	5	160	130	110	11	9	128	13.6
W 86	P80 B5	19	21.8	6	200	165	130	12	11.5	128	13.8
W 86	P90 B5	24	27.3	8	200	165	130	12	11.5	128	13.7
W 86	P100 B5	28	31.3	8	250	215	180	13	12.5	136	13.8
W 86	P112 B5	28	31.3	8	250	215	180	13	12.5	136	13.8
W 86	P80 B14	19	21.8	6	120	100	80	7.5	6.5	128	13.5
W 86	P90 B14	24	27.3	8	140	115	95	7.5	8.5	128	13.5
W 86	P100 B14	28	31.3	8	160	130	110	10	8.5	136	13.6
W 86	P112 B14	28	31.3	8	160	130	110	10	8.5	136	13.6

[^0]Riduttori

W 110...P(IEC)

OUTPUT

W 110

(0)	1	M	M1	M2	N	N1	N2	N3	N4	P	$\stackrel{\mathrm{Kg}}{ }$
W 110	P80 B5	19	21.8	6	200	165	130	-	M10x12	143	28
W 110	P90 B5	24	27.3	8	200	165	130	-	M10x12	143	28
W 110	P100 B5	28	31.3	8	250	215	180	13	13	151	29
W 110	P112 B5	28	31.3	8	250	215	180	13	13	151	29
W 110	P132 B5	38	41.3	10	300	265	230	16	14	226	31
W 110	P80 B14	19	21.8	6	120	100	80	7.5	7	143	27.5
W 110	P90 B14	24	27.3	8	140	115	95	6.5	9	143	27.5
W 110	P100 B14	28	31.3	8	160	130	110	13	9	151	27
W 110	P112 B14	28	31.3	8	160	130	110	13	9	151	27

[^1]VF..HS - W..HS

VF_P...HS

W_U...HS

VF_V...HS

VF_F/FA...HS

W_UF/UFC/UFCR...HS

VF_N...HS

VF_U...HS

	A	B	B1	B2	F	F1	F2	F3	F4	G	V	\bigcirc
VF 44_HS	44.6	18 H7	20.8	6	11	12.5	4	30	54	72	-	2.0
VF 44 U HS										55		
VF 49_HS	49.5	25 H7	28.3	8	16	18	5	40	65	82	M6x16	3.0
VF 49 U HS										64.5		
W 63_HS	62.17	25 H7	28.3	8	18	20.5	6	40	110.5	72.5	M6x16	6.4
W 75_HS	75	30(28) H7	33.3(31.3)	8	19	21.5	6	40	128	87	M6x16	10.0
W 86_HS	86.9	35 H7	38.3	10	25	28	8	50	144	100	M8x19	14.1
W 110_HS	110.1	42 H 7	45.3	12	25	28	8	60	168	125	M8x19	27

Dimensions common to the other configurations can be found from page 28 to 37 .

2.10 ACCESSORIES

2.10.1 Plug-in output shaft

		C	D	D1	E	F1	F2	M	N	V	X	Y
VF	30	30	14	14	35	5	16	61	96	M 5×13	5	20
	44	40	18	18	45	6	20.5	70	115	M6x16	5	30
	49	60	25	25	65	8	28	89	154	M8x19	5	50
W	63	60	25	25	65	8	28	127	192	M8x19	5	50
	75_D28	60	28	30	65	8	31	134	199	M8x20	5	50
	75_D30	60	30	30	65	8	33	134	199	M10x22	5	50
	86	60	35	35	65	10	38	149	214	M10x22	5	50
	110	75	42	42	80	12	45	164	244	M12x28	7.5	60

		C	D	D1	E	F	F1	F2	L	V	X	Y
VF	30	30	14	14	32.5	55	5	16	120	M5x13	5	20
	44	40	18	18	42.7	64	6	20.5	149.4	M6x16	5	30
	49	60	25	25	63.2	82	8	28	208.4	M8x19	5	50
W	63	60	25	25	63.2	120	8	28	246.4	M8x19	5	50
	75_D28	60	28	30	64	127	8	31	255	M8x20	5	50
	75_D30	60	30	30	64	127	8	33	255	M10x22	5	50
	86	60	35	35	64	140	10	38	268	M10x22	5	50
	110	75	42	42	79.3	155	12	45	313.5	M12x28	7.5	60

2.10.2 VF-interchangeable foot kits KA, KV

KV

	\mathbf{A}	\mathbf{H}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}
$\mathbf{W} \mathbf{6 3}$	100	27.5	111	95	11	8	135	145	56.5	15.5
$\mathbf{W} 75$	115	28	115	120	11	9	139	174	56.5	15.5
W 86	142	42	146	140	11	11	170	200	69	20
W 110	170	45	181	200	13	14	210	250	69	20

Riduttori

2.11 CUSTOMER'S SHAFT

2.11.1 Manufacturing instructions

Pivot of driven equipment should be made from high grade alloy steel. Table below shows recommended dimensions for the Customer to consider when designing mating shaft. A device retaining the shaft axially is also recommended (not shown).
The number and size of relative tapped holes at shaft end depend on application requirements.

	A1	A2	A3	B	B1	B2	C	D	E	F	G	R	S	UNI 6604
VF 30	≥ 19	14 f7	13	53	18.5	16	40	6.5	6.5	16	5 h 9	0.5	1.5	$5 \times 5 \times 40 \mathrm{~A}$
VF 44	≥ 23	18 f7	17	62	22.5	17	50	6	6	20.5	6 h 9	0.5	1.5	$6 \times 6 \times 50 \mathrm{~A}$
VF 49	≥ 30	25 f7	24	80	20.5	39	20	2	2	28	8 h9	1	1.5	$8 \times 7 \times 20 \mathrm{~A}$
W 63	≥ 30	25 f7	24	118	38	42	35	2	2	28	8 h 9	1	1.5	$8 \times 7 \times 35 \mathrm{~A}$
W 75	≥ 35	28 f7	27	125	38	49	40	2	2	31	8 h 9	1	1.5	$8 \times 7 \times 40 \mathrm{~A}$
	≥ 35	30 f7	29	125	38	49	40	2	2	33	8 h9	1	1.5	$8 \times 7 \times 40 \mathrm{~A}$
W 86	≥ 42	35 f7	34	138	43	52	40	2	2	38	10 h 9	1.5	1.5	$10 \times 8 \times 40 \mathrm{~A}$
W 110	≥ 48	42 f7	41	153	43	67	50	2	2	45	12 h9	1.5	2	$12 \times 8 \times 50 \mathrm{~A}$

INDEX OF REVISIONS (R)

R5	
\square	Description
\ldots	Informations about ATEX gearmotors and ATEX electric motors removed because no longer available.
22	"Motor availability" section updated.
23	
28	"Dimensions" section updated.
38	

This publication supersedes and replaces any previous edition and revision. We reserve the right to implement modifications without notice. This catalogue cannot be reproduced, even partially, without prior consent.

GJ Bonfiglioli

power, control and green solutions

Bonfiglioli has been designing and developing innovative and reliable power transmission and control solutions for industry, mobile machinery and renewable energy applications since 1956.

[^0]: * On both sides

[^1]: * On both sides

