

Simmerringe

Technische Grundlagen	
Simmerringe	16
Dichtmechanismus der Simmerringe	23
Abzudichtende Medien	30
Werkstoffe für Simmerringe	34
Einflussfaktoren	38
Gestaltung der Welle	45
Gestaltung der Aufnahmebohrung	51
Simmerringe mit Dichtlippe aus PTFE	52
Simmerring Encoder-Elemente	54
Vorauswahl Simmerringe Cassette Seal und Combi Seal	55
Simmerring Cassette Seal	56
Simmerring Combi Seal	59
Handling und Montage von Simmerringen	61
Fehlerbehandlung	68
Produkte	
Draduktyarzajahnia	7.5
Produktverzeichnis	
Bauformen	89

simrit®

Simmerringe

Die Bezeichnung dieser Dichtungen zur Abdichtung drehender Wellen ist nach DIN/ISO "Radialwellendichtringe" Die Bezeichnung Simmerring® ist eine für das Unternehmen Freudenberg geschützte Marke.

Anforderungenn

- Zuverlässige Dichtheit
- Hohe Funktionssicherheit
- Verträglichkeit mit den abzudichtenden Medien
- Geringe Reibung
- Einfache Montage.

Merkmale

- Zylindrischer Außenmantel zur Sicherstellung der statischen Abdichtung im Gehäuse
 - aus Elastomer mit integriertem metallischem Versteifungsblech (→ Abb. 1)
 - aus Metall, überwiegend am Außendurchmesser fertig gezogen, aber auch noch am Außendurchmesser bearbeitet
- federbelastete Dichtlippe zur Sicherstellung der dynamischen und statischen Dichtheit an der Welle. Die permanente Weiterentwicklung hat zu optimierten Dichtlippenprofilen geführt, um die Zuverlässigkeit bei einem breiten Belastungsspektrum weiter zu erhöhen.
- eine oder im Sonderfall auch mehrere Schutzlippen gegen Schmutz- und Staubanfall von außen.

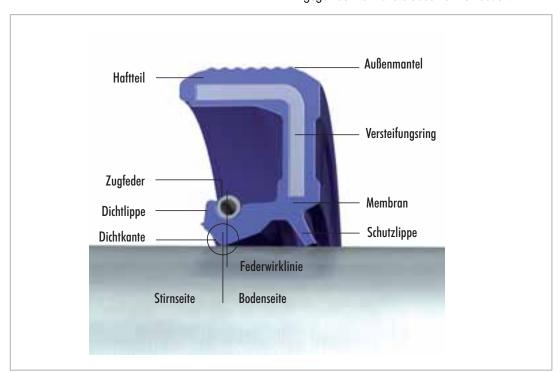


Abb. 1 Wichtige Kenngrößen an einem Simmerring®

Betriebsbedingungen

Entscheidend für die Auswahl der Dichtung sind die Gewichtung der Forderungen für jeden Einsatzfall und die Betriebsbedingungen:

- Umfangsgeschwindigkeit,
 d.h. Durchmesser und Drehzahl der Welle
- Temperatur
- Druck
- Schmutzanfall von außen
- Schmutzanfall im abzudichtenden Aggregat
- Schwingungen
- Abzudichtende Medien
 - Schmieröle auf Mineralöl- und synthetischer Basis
 - Schmierfette auf Mineralöl- und synthetischer Basis
 - Weitere flüssige, pastöse und gasförmige Medien, deren Verträglichkeit mit dem Dichtungswerkstoff sichergestellt sein muss.

Einsatzbereiche

Simmerringe werden zur Abdichtung drehender Wellen eingesetzt, überwiegend in den Anwendungen:

- Motoren (Abdichtung von Kurbel- und Nockenwellen)
- Antriebsstrang in Land- und Baumaschinen (Abdichtung von Getrieben, Differentialen, Achsen, Radnaben)
- Antriebsstrang in PKW und NFZ (Abdichtung von Getrieben, Differentialen, Achsen, Radnaben)
- Industriegetriebe (z.B. Abdichtung von Stirnrad-, Schneckengetrieben)
- Hydroaggregate (Abdichtung von Hydropumpen, Hydromotoren)
- Schwerindustrie (Abdichtung von Wellen in Walzwerken, Zementmühlen, Windkraftanlagen)
- Schiffbau (Abdichtung von Stevenrohren, Strahlrudern, Ruderantrieben)
- Maschinen in der Lebensmittelindustrie
- Maschinen in der Chemieindustrie
- Kompressorenbau
- Haushalts- und Industriewaschmaschinen.

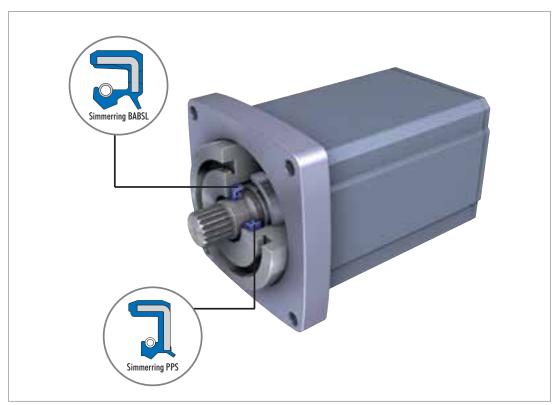


Abb. 2 Drehdruckbelastbare Simmerrirnge in hydraulischen Pumpen und Motoren



Abb. 3 Simmerringe und Verschlussdeckel in Industriegetrieben

Abb. 4 Simmerring® Cassette Seals und Simmerring® Combi Seals in angetriebenen Achsen

Abb. 5 Simmerringe in Unterwasseranwendungen der Schiffstechnik

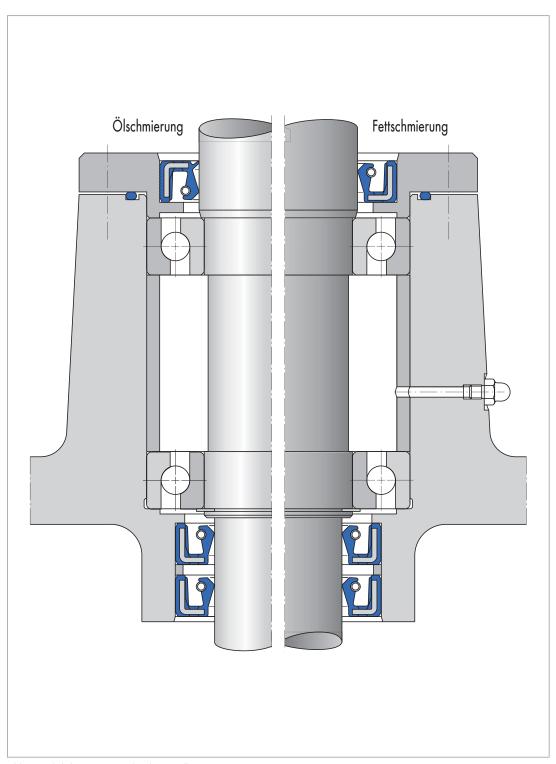


Abb. 6 Abdichtung einer senkrechten Welle

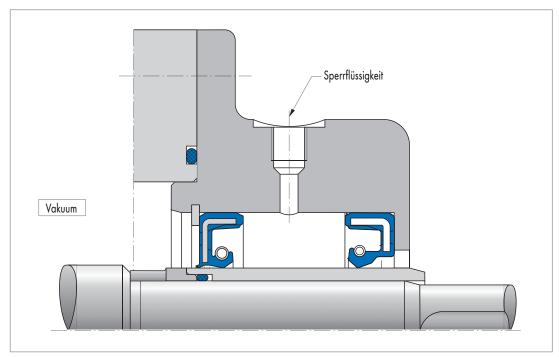


Abb. 7 Abdichtung gegen Vakuum

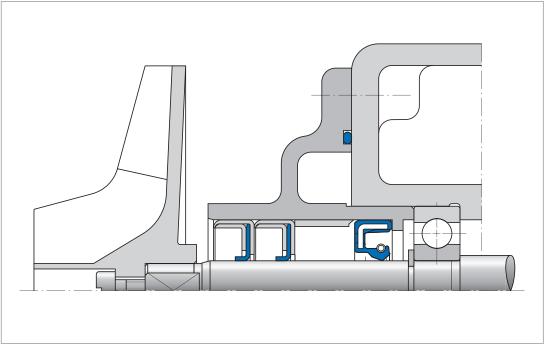


Abb. 8 Abdichtung gegen aggressive Medien (Beispiel: Pumpe)

Dichtmechanismus der Simmerringe

Der Simmerring dichtet eine rotierende Welle gegen das überwiegend Gehäuse eines Aggregates ab z.B. (→ Abb. 2 und → Abb. 3)

- statische Abdichtung und Sicherstellung des festen Sitzes der Dichtung zwischen Außenmantel der Dichtung und Gehäusebohrung
- dynamische und bei Stillstand der Welle statische Abdichtung zwischen Dichtlippe und Welle

Auf das Dichtverhalten und die Lebensdauer der Dichtung wirkt ein komplexes System von Einflussgrößen und deren wechselseitigen Wirkungen ein:

Das abzudichtende Aggregat

- Das Gehäuse
 - Oberflächen
 - Mittenversatz zur Welle
 - Toleranzen
 - Werkstoff
- Die Welle
 - Durchmesser
 - Drehzahl
 - Exzentrizität
 - Oberfläche
 - Axiale Bewegung
 - Werkstoff

Das Medium

- Temperatur
- Chemische Wirkungen
- Viskosität
- Schmierfähigkeit
- Druck
- Zersetzungsprodukte

Die Umgebung und der Betrieb

- Temperatur
- Staub und Schmutz
- Lauf- und Stillstandsperioden

Der Simmerring

- Die Konstruktion und die Toleranzen
 - des Haftteils
 - der Dichtlippe
- Die Radialkraft
- Der Werkstoff
 - Härte
 - Verschleißfestigkeit
 - Resistenz gegen Quellung und Schrumpfung
 - Reibungseigenschaften
 - Dichtfähigkeit etc.

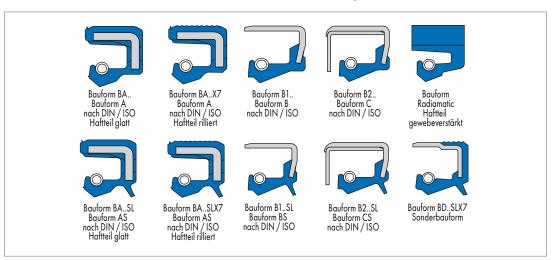


Abb. 9 Ausführungen des Haftteils der Simmerringe

Statische Dichtheit und Sitz in der Bohrung

Der Außenmantel (auch Haftteil) des Simmerrings hat die Aufgaben:

- statische Abdichtung in der Gehäusebohrung
- Sicherstellung eines festen Sitzes in der Bohrung
- Ermöglichen einer einwandfreien und leichten Montage der Dichtung

Je nach Schwerpunkten und Betriebsbedingungen in diesen Aufgaben werden unterschiedliche Ausführungen des Haftteils eingesetzt (-> Abb. 9).

Zur störungsfreien Montage sind zu berücksichtigen:

- Anfasungen am Haftteil (s. DIN 3760)
- Presssitzzugaben zum Nenndurchmesser je nach Ausführung des Haftteils nach DIN 3760

Anforderungen an die Ausführung der Gehäusebohrung (→ Gestaltung der Aufnahmebohrung ab Seite 51).

Simmerring mit Elastomer-Außenmantel Bauform BA (A nach DIN 3760)

Bietet die besten Voraussetzungen für die statische Abdichtung:

- bei geteilten Gehäusen
- bei Gehäusen aus Leichtmetall mit erhöhter Wärmeausdehnung
- bei Druckanwendungen
- bei dünnflüssigen und gasförmigen Medien

Simmerring mit Elastomer-Außenmantel Bauform BA...X7 Außenmantel mit Rillierung

- ermöglicht leichte Montage
- vermeidet die Gefahr des Zurückfederns oder Schrägstellen der Dichtung
- ermöglicht höhere Presssitzzugabe zur Erhöhung der Sicherheit der statischen Abdichtung, vor allem bei Gehäusen mit erhöhter Wärmeausdehnung

Simmerring mit teilgummiertem Außenmantel Bauform BD

- Vereinigt die Vorteile der sicheren statischen Abdichtung durch den elastomeren Teil mit dem festen Sitz durch den metallischen Teil des Außenmantels.
- Nicht als Standardprogramm, sondern als kundenbezogene Serien- oder Sonderteile lieferbar. Bitte anfragen!

Simmerring mit Blechmantel Bauform B1 und B2 (B/C nach DIN 3761)

Herstellung der metallischen, glatten Außenfläche durch Tiefziehen, Drehen oder Schleifen. Schutz gegen Korrosion je nach Herstellverfahren durch Korrosionsschutzöl oder dünne Harzschicht.

- für Anforderungen an besonders festen und exakten Sitz in der Bohrung
- Achtung: bei ungünstigen Bedingungen wie
 - rauen Bohrungsoberflächen
 - dünnflüssigen und kriechenden Medien
 - Druckanwendungen kann die Verwendung einer Dichtmasse im Sitzbereich notwendig werden.
- Für den Einsatz in Gehäusen mit erhöhter Wärmeausdehnung oder geteilten Gehäusen nur bedingt einsetzbar.
- Bei Einpressen in Gehäuse aus Leichtmetall besteht die Gefahr von Riefenbildung in der Bohrung.
- Bauform B2 (mit fest eingelegter Blechkappe) besitzt höhere radiale Steifigkeit für:
 - größere Abmessungen
 - erschwerte und rauhe Montage.

Werkstoff des metallischen Versteifungssteils und des Metallgehäuses

- für alle Standardanwendungen unlegierter Stahl DIN FN 10027-1
- für Sonderfälle nichtrostender Stahl DIN EN 10088

Dynamische Dichtfunktion

Der wichtigste Funktionsbereich des Simmerrings ist die mit der Oberfläche der rotierenden Welle in Kontakt stehende Dichtkante (→ Abb. 10). Für die Dichtfunktion ist der Dichtmechanismus im Kontaktbereich der Dichtlippe von entscheidender Bedeutung. Er ist abhängig von:

- der Auslegung der Dichtlippe
- der Struktur des Elastomer-Werkstoffs
- der Beschaffenheit der Wellenoberfläche
- dem abzudichtenden Medium.

Kenngrößen der Dichtlippe

Für die Auslegung der Kenngrößen sind die Ergebnisse einer breiten Erfahrung in allen Anwendungen notwendig. Die Auslegung erfolgt durch den Hersteller in Abhängigkeit von Werkstoff, Größe, Geometrie und Anwendung der Simmerringe.

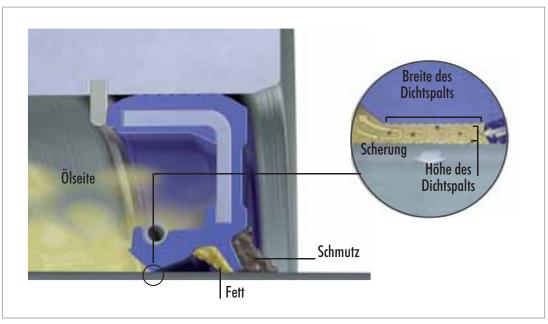


Abb. 10 Kontaktzone Dichtung-Welle eines Simmerrings

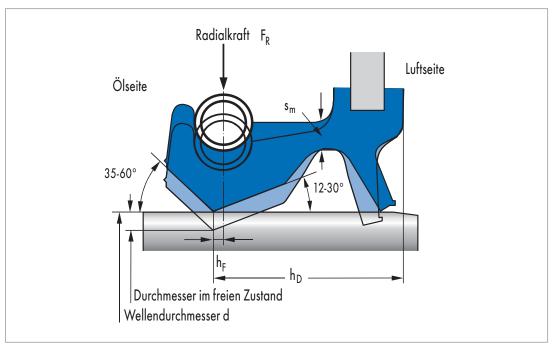


Abb. 11 Maße am Profil der Dichtlippe

simrit®

Die Überdeckung (→ Abb. 11)

Der Innendurchmesser der Dichtlippe ist im freien, ungespannten Zustand immer kleiner als der Wellendurchmesser. Die Überdeckung (auch Vorspannung) ist die Differenz dieser zwei Maße und liegt je nach Wellendurchmesser zwischen ca. 0,8 mm und 2,5 mm.

Die geometrischen Kenngrößen

Kenngröße für die Länge der Lippe ist das Maß h_D.
Kenngröße für den Querschnitt der Lippe ist s_m.
s_m bildet den Drehpunkt bei Aufdehnung oder Auslenkung der Lippe. h_D und s_m werden in Abhängigkeit vom Durchmesser der Welle und den Betriebsbedingungen ausgelegt. Die Abstimmung beider Größen beeinflusst die Flexibilität der Lippe:

- Flexible und lange Dichtlippen für hohe Toleranzen von Koaxialität und Rundlauf (zulässige Werte → Abb. 30 und → Abb. 31).
- Kurzes und zur Welle lagestabiles Profil bei Druckanwendungen.

Die Kenngröße für den Abstand des Mittelpunktes der Feder von der Dichtkante ist der Federwirkabstand h_f :

- Zu kleines hf kann ein Überkippen der Lippe vor allem bei Wellenschlag und nicht planem Einbau zur Folge haben.
- Zu großes h_f hat eine Durchbiegung der Lippe und damit eine breite Anlage der Lippe an der Welle sowie eine breite Laufspur zur Folge.

Die Dichtlippenwinkel

Die Dichtlippenwinkel beeinflussen den Dichtmechanismus durch Einwirkung auf die Anpressungsverhältnisse:

- ölseitig: steiler Winkel 35° ... 60°
- luftseitig: flacher Winkel 12° ... 30°

Die Radialkraft

Die Radialkraft übt durch die Aufdehnung der Dichtlippe im eingebauten Zustand eine ringförmige Pressung auf die Welle aus. Diese Summe aus tangentialen Zug- und Biegekräften von Dichtlippe und Feder wird bestimmt durch den:

- Einfluss des Elastomers: Der Elastizitätsmodul ist abhängig von Werkstoff, Temperatur und Alterung.
 Damit ist der Abfall der Radialkraft während des Betriebs abhängig von Temperatur und Zeit.
- Einfluss des Dichtlippenprofils: Stegdicke, Profilkopf (Stegstärke, Maß h_D u.a.m.), Dehnung, d.h. Überdeckung
- Einfluss der Zugfeder: Werkstoff (Standardwerkstoff Federstahldraht DIN 17223, in Sonderfällen nichtrostender Stahl gemäß DIN EN 10088), Temperatur, Länge, Windungsdurchmesser, Drahtstärke.

Ein niedriger Wert der Radialkraft wird angestrebt, um Reibung und Verschleiß der Dichtung gering zu halten. Achtung: die Radialkraft muss zur Sicherstellung der Dichtfunktion groß genug sein!

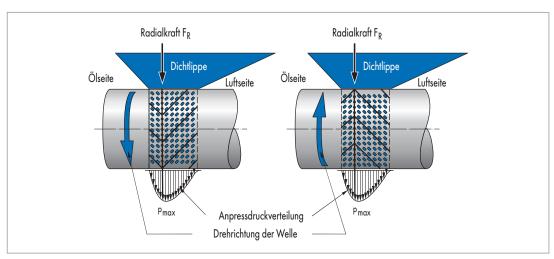


Abb. 12 Verformungsstruktur (Mikrodrall) des Elastomers in der berührenden Kontaktfläche der Dichtlippe

Dichtfunktion in der Kontaktzone der Dichtlippe

Die Radialkraft der Dichtlippe erzeugt in Verbindung mit der Auslegung von Dichtlippenwinkel und Federwirkabstand eine asymmetrische Anpressdruckverteilung (→ Abb. 11):

- Druckmaximum und steiler Anstieg auf der Ölseite
- Flacher Abfall auf der Luftseite

Für die Funktion der Dichtung ist diese asymmetrische Verteilung des Anpressdrucks von großer Bedeutung. Die Anpressdruckverteilung und die durch die drehende Welle entstehende Umfangskraft führen zu einer charakteristischen Verformungsstruktur der Kontaktfläche der Dichtlippe (→ Abb. 12). Ein geeigneter elastomerer Werkstoff der Dichtung zeichnet sich durch die Bildung einer deutlichen Struktur der "Verzerrung" aus. Die Struktur der Verformung bildet das Dichtelastomer mit dem Einlauf der Dichtung.

Deshalb: Eine Einlaufphase ist für die Dichtung notwendig. Erst danach ist die volle Dichtfähigkeit vorhanden.

Diese Verformungsstruktur erzeugt eine Drallwirkung und zusammen mit der drehenden Welle eine Pumpwirkung auf das abzudichtende Medium in Richtung auf die Ölseite. Dieser Mikropumpeffekt ist entscheidend für die Dichtfunktion. (

Abb. 13)

Dichtlippen mit Rückförderdrall

Um das Dichtvermögen bei hohen Belastungen durch hohe Temperaturen und Umgangsgeschwindigkeiten zu erhöhen, wird für spezielle Bauformen die Luftseite der Dichtlippe mit einem Rückförderdrall versehen (→ Abb. 14). In Drehrichtung gerichtete, schräge Drallrippen reichen bis in die Kontaktzone der Dichtlippe. Sie verstärken die Pumpwirkung des Mikrodralls des elastischen Werkstoffs. Da die Ausrichtung der Rippen des Einzeldralls an eine Drehrichtung gebunden sind, kennzeichnet ein Pfeil auf der Bodenseite der Drallringe die zulässige Drehrichtung.

lst der Einsatz für beide Drehrichtungen notwendig, wird Wechseldrall eingesetzt. Dessen Wirksamkeit ist geringer als die des Einzeldralls.

Alle Drallringe besitzen eine fertige, d.h. im Formwerkzeug erzeugte Dichtkante.

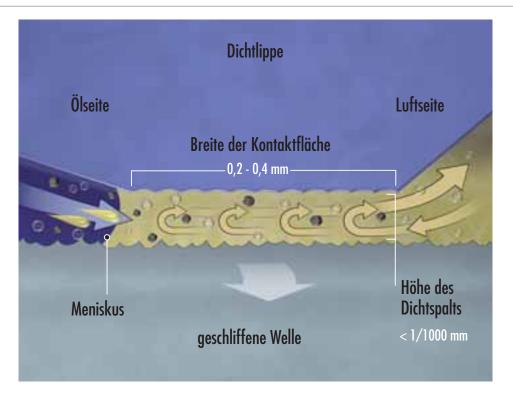


Abb. 13 Mikro-Pumpwirkung der Dichtlippe in der Kontaktzone Welle-Dichtlippe

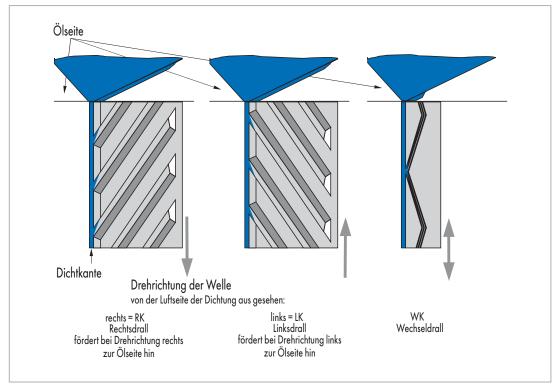


Abb.14 Rückförderdrall auf der Luftseite der Dichtlippe

Ursachen für Undichtigkeit

Die Dichtung wird undicht, wenn die komplexen Verhältnisse im Bereich der Kontaktzone gestört werden durch:

- falsche Rauigkeit der Welle
- Kratzer, Poren und andere Beschädigungen an Welle und Dichtung
- Verunreinigungen und Zersetzungsprodukte des Mediums
- Verhärtung und Risse in der Dichtkante.

Schmierung und Reibung

Die ausreichende Versorgung der Dichtung mit Schmiermittel ist entscheidend für die Lebensdauer und Zuverlässigkeit der Dichtung. Je intensiver die Schmierung, desto geringer der Verschleiß.

Bereits im Stillstand dringt das abzudichtende und gleichzeitig zur Schmierung dienende Medium aufgrund von Kapillarkräften in die Unebenheiten von Welle und Dichtlippe. Aber der direkte Kontakt der Dichtlippe mit der Welle überwiegt. Beginnende und dann größer werdende Drehbewegungen führen ähnlich wie bei einem Gleitlager vom Zustand der Grenzreibung über Mischreibung bis zur überwiegenden hydrodynamischen Reibung.

Die Dichtung darf in keinem Fall trocken laufen. Deshalb: Bei Montage der Dichtung Welle und Dichtung leicht einfetten oder einölen.

Das abzudichtende Medium ist nicht nur Schmiermittel, sondern auch Kühlmittel zur Abführung der entstehenden Reibungswärme. Bereits in der Konstruktionsphase sollte sichergestellt werden, dass schon während der ersten Umdrehungen ausreichend Schmiermittel an der Dichtkante vorhanden ist (z.B. durch Bohrungen und Kanäle).

Einzelne Bauformen von Wälzlagern, besonders Kegelrollenlager, üben während des Laufs u.U. eine beträchtliche Pumpwirkung auf das Medium aus. Dadurch können sich unterschiedliche Ölzustände einstellen, die die Schmierung der Dichtkante gefährden können. Abhilfe: bereits bei der Konstruktion zweckentsprechende Bohrungen und Kanäle vorsehen. Alle Parameter, die die Radialkraft beeinflussen und die Schmierverhältnisse an der Dichtlippe wirken sich auf die Reibleistung der Dichtung aus.

Das Minimum der Reibungsleistung ist durch die Mindestanpressung der Dichtlippe vorgegeben, die die Dichtfunktion sicherstellt.

Die Anhaltswerte für die Reibungsleistung wurden bei vollständiger Schmierung der Dichtlippe ermittelt (Abb. 15). Die angegebenen Werte geben nur die Größenordnung der Reibung an. Sie können nicht als Absolutwerte für den Einzelfall verwendet werden. Die permanente Forderung nach geringer Reibung und zuverlässiger Dichtfunktion führt zu ständiger Weiterentwicklung der Dichtungswerkstoffe und der Gestaltung der Dichtlippe.

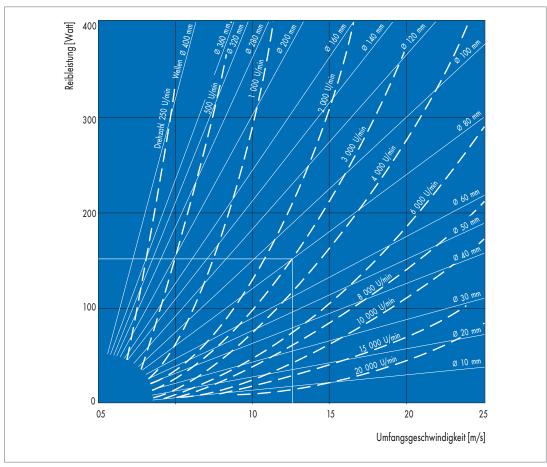


Abb. 15 Anhaltswerte für die Reibleistung eines Simmerrings in Motorenöl SAE 20, bei T=100 °C, Beispiel: Wellen-Ø d1=80 mm, Drehzahl n=3000 U/min, Reibungsleistung ca. 150 W

simrit[®]

Abzudichtende Medien

Medium und Werkstoffauswahl

Das abzudichtende Medium bestimmt maßgeblich die Auswahl des Werkstoffs von Simrit und damit auch die Ausführung des Simmerrings.

Die Abdichtung ist möglich gegen flüssige, pastöse und in Ausnahmefällen auch gasförmige Medien.

Die ständig zunehmende Belastung der Aggregate durch höhere Leistungsdichte hat eine permanente Anpassung und Neuentwicklung der Schmierstoffe zur Folge. Die Dichtungsverträglichkeit ist hierbei ein maßgebendes Kriterium. Die intensive Prüfung der neuen Schmierstoffe hat zum Aufbau einer umfangreichen Datenbank geführt, die über die Dichtungsverträglichkeit Auskunft gibt. Bitte im Bedarfsfall anfragen.

Abdichtung gegen Schmierstoffe, z.B.:

- Mineralöle
- Synthetische Öle
- Fette auf Mineralölbasis
- Synthetische Fette.

sowie gegen Arbeitsflüssigkeiten, z.B.:

- Hydrauliköle nach DIN 51524
- Schwerentflammbare Druckflüssigkeiten nach VDMA 24317 und VDMA 24320
- Silikonöle mit geringen Schmiereigenschaften.

In besonderen Fällen gegen aggressive Medien mit geringen Schmiereigenschaften, wie z.B.:

- Säuren
- Laugen
- Organische Lösungsmittel.

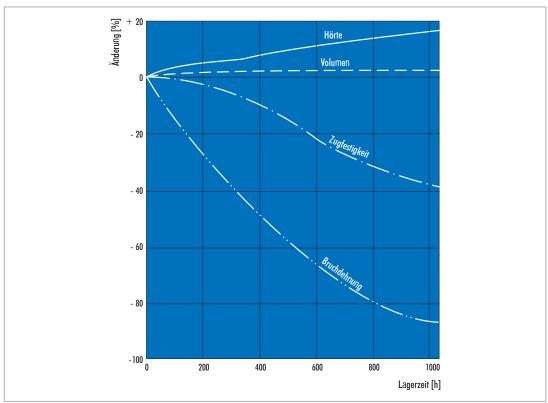


Abb. 16 Änderung von Kennwerten eines NBR-Werkstoffes in Abhängigkeit von der Lagerzeit; Lagerung in Getriebeöl SAE 80 bei 100 °C

Reaktionen zwischen Medien und Werkstoffen von Simrit

Von entscheidendem Einfluss sind die chemischen/ physikalischen Einwirkungen der Medien auf die Dichtungswerkstoffe. Die Reaktionen bzw. Wechselwirkungen werden vor allem mit steigender Temperatur beschleunigt. Die Werkstoffe können unter dem Einfluss der Medien verhärten oder erweichen:

- Verhärtung durch Alterungsvorgänge durch die Medien, insbesondere bei erhöhter Temperatur
- Erweichung durch Quellung durch den Einfluss des Mediums.

Eine erste, oftmals ausreichend genaue Beurteilung der Auswirkung der abzudichtenden Medien auf den Elastomerwerkstoff erfolgt durch die Ermittlung der mechanischen Werte an Prüfkörpern im Labor. Vor und nach einer Lagerung genormter Elastomerprüfkörper im entsprechenden Medium, werden Werte wie Härte, Bruchdehnung, Zugfestigkeit und Volumen gemessen, die Änderung über die Zeit ermittelt und als Diagramm dargestellt (DIN 53521), → Abb. 17.

Der Einfluss verschiedener Schmiermedien, besonders unter dem Einfluss einer hohen Temperatur, wird am Beispiel der Änderung der Bruchdehnung deutlich (→ Abb. 17).

Zur Beurteilung der Gebrauchsdauer eines Elastomerwerkstoffes und damit einer Dichtung gilt als Richtwert für max. zulässige Veränderung: Abfall der Bruchdehnung <50%.

Grenzbedingungen

Beim Zusammentreffen mehrerer Grenzbedingungen wie:

- der max. zulässigen Umfangsgeschwindigkeit (→ Abb. 20),
- der max. zulässigen Temperatur (→ Tab. 3),
- der Druckbeaufschlagung
- und insbesondere bei spärlicher Schmierung bzw. eingeschränkter Wärmeabfuhr,

werden die Anwendungsgrenzen der Simmerringe erreicht und überschritten sowie die Gebrauchsdauer eingeschränkt.

Mineralöle

- Einsatz in Kraftfahrzeugen nach API und MIL-Klassifikationen:
 - Motoröle, Schaltgetriebeöle, Hypoidgetriebeöle, ATF-Öle für Automatgetriebe
- Einsatz in weiten Bereichen des Getriebebaus:
 - C, CL, CLP-Getriebeöle nach DIN 51517.

Abb. 17 Änderung der Bruchdehnung von NBR bei Lagerung in verschiedenen Medien bei 100 °C

Niedrig legierte Mineralöle zeigen im allgemeinen gute Verträglichkeit mit den für die Simmerringe eingesetzten Werkstoffen.

Steigende Anforderungen an die Mineralöle führen zu höher und in neuen Kombinationen legierten Ölen. Dadurch wird die Prüfung der Verträglichkeit mit Elastomerwerkstoffen zunehmend wichtiger.

Beachten Sie bitte die spezifischen Angaben der Ölhersteller und prüfen im Zweifelsfall die Verträglichkeit.

Hypoid-Getriebeöle

Hochdruckschmieröle mit einem Anteil spezieller Additive, vor allem EP-Zusätzen, dienen zur Verbesserung der Schmierfähigkeit und zur Vermeidung der Fressneigung von Lagern und Zahnrädern.

Die Wirkung der Additivierung wird nicht nur an den Zahnflanken der Zahnräder, sondern auch an der Dichtlippe wirksam. Folge sind bei entsprechender Wärmeentwicklung Ablagerungen im Bereich der Dichtkante.

Abhilfe: Einsatz von Simmerringen mit Dichtlippen mit Rückförderdrall und Einsatz von speziellen Werkstoffen. Bitte fragen sie uns.

Auf NBR-Werkstoffe wirken die Additive verhärtend. Der Standard-Werkstoff 72 NBR 902 ist weitgehend unempfindlich gegen Hypoidöle, wenn die Temperatur von 80 °C im Medium nicht überschritten wird (\rightarrow Tab. 3).

FKM-Werkstoffe sind thermisch höher belastbar und gegen verschiedene Wirkstoffe der Hypoidöle chemisch beständiger.

Deshalb: Verwenden Sie bis zu den angegebenen Grenztemperaturen Simmerringe aus 75 FKM 585, Bauform BAUM und BAUMSL.

Die Dichtlippen dieser Bauform sind für geringe Reibung ausgelegt und halten so die Erhöhung der Temperatur im Bereich der Dichtkante gering und die Neigung zur Bildung von Ölkohleablagerungen in diesem Bereich niedrig.

Synthetische Schmierstoffe

Teil- und vollsynthetische Schmierstoffe (→ Tab. 3) werden eingesetzt:

- zur Verbesserung des Viskositätsverhaltens
- zur Erhöhung des Hochtemperaturverhaltens
- zur Erhöhung der Alterungsbeständigkeit
- zur Erhöhung des Wirkungsgrades.

Die eingesetzten Basisöle weisen in der überwiegenden Zahl der Fälle eine gute Verträglichkeit mit den Elastomeren auf. Die Aggressivität ist abhängig von der Art und dem Anteil der in den Schmierstoffen enthaltenen Additive. Das breite Spektrum der chemischen Substanzen vermehrt die Vielfalt der möglichen Einflüsse auf die Dichtung.

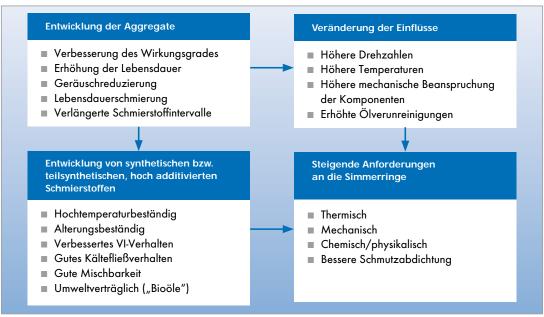


Abb. 18 Steigende Anforderung an die Simmerringe

Hinweis:

Bevor neue Öle eingeführt werden, sollte die Elastomerverträglichkeit intensiv untersucht werden. Im ersten Schritt sollte eine statische Laborprüfung über mindestens 168 h (besser 1000 h) erfolgen.

Es hat sich in vielen Fällen gezeigt, dass letztendlich nur ein dynamischer Dichtheitstest über 1000 h einen zuverlässigen Aufschluss über die Dichtungsverträglichkeit liefert. Hier hat die intensive Zusammenarbeit von Dichtungs- und Schmierstoffhersteller bewährt

Lube & Seal

Die Anforderungen an die Dichtsysteme steigen permanent (→ Abb. 18). Daher ist es erforderlich, die einwirkenden Einflussparameter zunehmend intensiver aufeinander abzustimmen. Ziel der "Lube & Seal"-Projekte ist die Optimierung hochbelasteter Dichtsysteme zusammen mit Fa. Klüber, München: Einsatz von optimal aufeinander abgestimmtem Dichtungswerkstoff und Schmierstoff:

- Optimierung der chemisch/physikalischen
 Wechselwirkungen Elastomer Schmierstoff
- Minimierung der Reibung und damit der Verlustleistung
- Minimierung des Verschleißes
- Erhöhung der Zuverlässigkeit
- Erhöhung der Lebensdauer.

Fette

Für die Abdichtung gegen Fett sind die Bedingungen zur Abfuhr der Reibungswärme ungünstiger als für die flüssigen Medien.

Abhilfe: Falls die Umfangsgeschwindigkeit ca. 50% der zulässigen Werte für Öl überschreitet (Werkstoff 72 NBR 902, → Abb. 20), ist die Umstellung auf eine Ölschmierung zu prüfen.

Für die Abdichtung fettgeschmierter, langsam laufender Wellen wird gemäß den Angaben der Lagerhersteller eine möglichst vollständige Füllung des Raumes mit Fett empfohlen. Im Hinblick auf das Dichtvermögen und geringen Verschleiß empfehlen wir die Dichtung an einer Seite der Lagerung so einzubauen, dass die Dichtlippe nach außen zeigt, um bei Erwärmung und Nachschmierung einen Überdruck im abgedichteten Raum zu vermeiden. Für die Abdichtung mit nicht ausreichender Versorgung mit Schmiermittel oder gegen

schlecht schmierende Medien wie Wasser und Waschlauge muss zur Schmierung der Dichtlippe eine eigene Menge Schmiermittel vorgesehen werden, z.B. im Raum zwischen Dicht- und Schutzlippe. Wir empfehlen die Füllung dieses Raumes zu ca. 40% mit Fett (→ Abb. 6). Besser ist der Einbau von zwei hintereinander angeordneten Simmerringen mit Fettfüllung zwischen den Dichtungen. Eine Nachschmiermöglichkeit ist zweckmäßig. Zur Schmierung der Dichtlippe eignen sich besonders Fette mit hoher Ölausscheidung:

- Wälzlagerfette der Konsistenzklasse NLGI 1 oder NLGI 2 gemäß DIN 51818 mit einer Mindestwalkpenetration von 310 oder 265 nach DIN 51804 oder ASTM D217-52
- Empfehlung: Fett Petamo GHY 133 N der Fa. Klüber, München.

Aggressive Medien

Für die Abdichtung von aggressiven Medien wie

- Säuren, Laugen
- Silikonölen für Viscokupplungen
- chemikalienbeständigen, fluorierten Öle,

ist die Beständigkeit gegen den Werkstoff der Dichtung in jedem Falle zu klären (→ Allgemeine technische Daten und Werkstoffe ab Seite 898).

Verunreinigungen im abzudichtenden Medium

Verunreinigungen können z.B. sein:

- Formsandrückstände aus der Fertigung von Gussgehäusen
- Abrieb rotierender Teile, z.B. von Schneckenrädern aus Bronze in Schneckengetrieben
- Zersetzungsprodukte aus den Medien

Diese Verunreinigungen beeinflussen je nach Beaufschlagung das Dicht- und Verschleißverhalten der Dichtungen negativ.

Abhilfe: Vorsorge treffen für möglichst saubere Gehäuse. Falls der Kontakt der Dichtlippe mit Verunreinigungen unvermeidbar ist (z.B. bei senkrecht stehenden Wellen), Vorschaltung eines Auffang- oder Schleuderbleches und Einsatz einer Vorschaltdichtung.

Werkstoffe für Simmerringe

Werkstoffbeschreibungen → Allgemeine technische Daten und Werkstoffe ab Seite 898 sowie → Tab. 2. Die Auswahl und der Einsatz des elastischen Werkstoffes für die Dichtlippe ist das wichtigste Kriterium für die Funktion und Zuverlässigkeit des Dichtsystems. Die Eigenschaften der einzelnen Werkstoffe sind in Spezifikationen für die Mindest- oder Höchstwerte der physikalischen Werte und deren Änderung nach festgelegten Prüfungen z.B. z.B. ASTM 2000 beschrieben. Die für Funktion entscheidende Größe, die Dichtfähigkeit, kann nur durch intensive und breit gefächerte Tests sichergestellt werden.

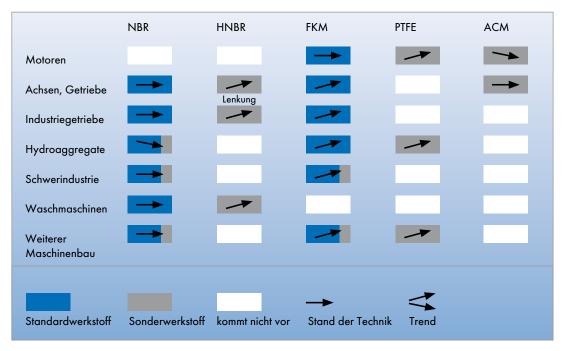


Abb. 19 Anwendungsbereiche der Werkstoffe für Simmerringe

Standardwerkstoffe für Simmerringe

Standardwerkstone for Simmerringe						
Werkstoff		72 NBR 902	75 FKM 585 ¹⁾	75 FKM 595 ¹⁾	PTFE 10/F56101	75 NBR 106200
Farbe		blau	dunkelbraun	rotbraun	dunkelgrau	schwarz
Dichte (g/cm³)	(DIN 53479)	1,46	2,06	2,01	-	1,44
Härte (Shore A)	(DIN 53505)	75	74	75	-	75
Spannungswert/100% (N/mm²)	(DIN 53504)	>4,5	>5,5	>4	-	>4
Zugfestigkeit (N/mm²)	(DIN 53504)	>10	>10	7,5	-	>10
Reißdehnung (%)	(DIN 53504)	>300	>210	>230	-	>250
Klassifizierung nach ASTM D 200	00	M2 BG 710	M2 HK 710	M2 HK 810	-	M2 BG 710
Temperaturbereich an der Dichtlip	ppe (°C)	-40/+100	-30/+200	-30/+200	-80/+200	-40/+120
Ak	zudichtende	Medien mit A	Angabe der Da	auertemperatu	ır (in °C)	
		N	Mineralöle			
Motorenöle		100	150	150	150	100
Getriebeöle		100	150	150	150	100
Hypoidgetriebeöle		90	140	140	150	90
ATF-Öle		100	150	150	150	100
Druckflüssigkeiten gem. DIN 515	24	100	150	150	150	100
Fette		100	150	150	150	100
Sch	werentflammb	are Flüssigkeit	en gem. VDMA	24317 und DIN	V 24320**	
Gruppe HFA ***		\otimes	\otimes	\otimes	+	\otimes
Gruppe HFB ***		\otimes	\otimes	\otimes	+	\otimes
Gruppe HFC ***		\otimes	-	-	+	\otimes
Gruppe HFD ****		-	150	150	150	-
Weitere Medien						
Heizöl EL und L		90	+	+	+	90
Wasser ***		-	\otimes	\otimes	+	-
Waschlauge ***		-	\otimes	\otimes	+	-

Tab. 1

Die angegeben Werte stützen sich auf eine begrenzte Anzahl von Prüfungen an Normprüfkörpern (2-mm-Musterplatten) aus Laborfertigung. Die an Fertigteilen ermittelten Daten können in Abhängigkeit des Fertigungsverfahrens und der Teilegeometrie von obigen Werten abweichen.

- Bei Einsatz von FKM-Werkstoffen in synthetischen Schmiermitteln Polyalkylenglykole (PAG) und Polyalphaolefinen (PAO) ist die maximale Einsatztemperatur durch einen Prüf- oder Aggregatelauf festzulegen.
- ** Einsatzgrenzen vom Medium vorgegeben
- + beständig, im allgemeinen nicht für diese Medien eingesetzt

*** Zusatzschmierung empfohlen

- ⊗ bedingt beständig
- **** Beständigkeit ist vom HFD-Typ abhängig
- nicht beständig

simrit

Sonderwerkstoffe für Simmerringe (auf Anfrage)

Werkstoff	Klassifizierung nach ASTM D2000	Härte (Shore A)	Farbe	Anwendungsbeispiele
70 NBR 110558	M2 BG 710	70	schwarz	Waschmaschinen
70 NBR 803	M2 BG 708	70	grau	Lebensmitteleinsatz
73 NBR 91589	M2 BG 710	73	blau	Zweitakt-Motoren
80 NBR 94207	M7 BG 810	80	schwarz	Seewasser/Schiffswellen
90 NBR 129208	M7 BG 910	90	schwarz	spez. Druckanwendungen
80 HNBR 172267	M5 DH 806	80	schwarz	spez. Druckanwendungen, Servolenkungen

Tab. 2

Die Eigenschaften der verschiedenen Elastomere bestimmen ihre wichtigen Einsatzgebiete (→ Abb. 19)

	NBR	FKM	PTFE	ACM	HNBR
Abriebbeständigkeit	gut	sehr gut	mäßig	mäßig	sehr gut
Hochtemperaturbeständigkeit	mäßig max. +100°C	sehr gut max. +200 °C (max. +150 °C Dauertemperatur)	max. +200 °C (max. +150 °C Dauertemperatur)	gut (max. +130 °C Dauertemperatur)	gut max. +100 °C (max. +140 °C Dauertemperatur)
Tieftemperaturbeständigkeit	bis -40 °C	bis −25 °C	bis −80 °C	bis −30 °C	bis -40 °C
Ölbeständigkeit	gut	sehr gut	sehr gut	gut	gut

Tab. 3 Eigenschaften von elastomeren Werkstoffen für Simmerringe

ACM - Polyacrylat-Elastomer

Sonderwerkstoff für den Einsatz vorwiegend in der Fahrzeugtechnik; auf Anfrage.

FKM - Fluor-Elastomer

Anwendungsbeispiele:

- Bei Anforderungen an h\u00f6here thermische und chemische Best\u00e4ndigkeit und hohe Umfangsgeschwindigkeiten
- Breite Anwendung im Maschinenbau, in Getrieben, Hydroaggregaten, auch in 2-Takt-Motoren
- in Motoren
- im Antriebsstrang von NFZ
- im Antriebsstrang von Land- und Baumaschinen

Medien:

- Mineralöle und Fette
- synthetische Schmierstoffe, falls die Beständigkeit gegeben ist
- aromatische und chlorierte Kohlenwasserstoffe
- Treibstoffe, Heizöle

Temperaturen:

-25 °C bis +160 °C

Standardwerkstoffe:

75 FKM 585 (für die Bauform BAUM und BAUMSL): Farbe: dunkelbraun; Härte: 75 ±5 Shore A 75 FKM 595 (für die Bauform BABSL): Farbe: rotbraun; Härte: 75 ±5 Shore A

Sonderwerkstoffe auf Anfrage: z.B. für Forderungen nach höherer Lebensdauer

HNBR - Hydriertes NBR-Elastomer

Sonderwerkstoff für den Einsatz vorwiegend in hydraulischen Lenkungen; auf Anfrage.

NBR - Nitril-Butadien-Elastomer

Anwendungsbeispiele:

Breite Anwendung im Maschinenbau, in Industriegetriebe, Hydroaggregaten (Hydropumpen, Hydromotoren), Zweitakt-Motoren und teilweise im Antriebsstrang von Land- und Baumaschinen

Medien:

- Mineralöle und Fette
- Synthetische Schmierstoffe

Bei Einsatz von synthetischen Ölen (Polyalkylenglykolen, Polyalphaolefinen) Temperaturen <80 °C Die Prüfung der Eignung in synthetische Schmierstoffen wird empfohlen.

Temperaturen:

-40 °C bis +100 °C kurzzeitig bis 120 °C

Standardwerkstoffe:

72 NBR 902: Farbe: blau; Härte: 72 ±5 Shore A

75 NBR 106200: Farbe: schwarz;

Härte: 75 ±5 Shore A

Sonderwerkstoffe auf Anfrage (\rightarrow Tab. 2) für die

Anwendungen:

- Seewasser (Schiffbau)
- Wasser und Waschlauge (Waschmaschinen)
- Besondere Druckbelastungen
- Lebensmittelindustrie

PTFE - Polytetrafluorethylen

- Nicht elastischer, hornartiger Werkstoff
- Einsatz in aggressiven Medien, gegen die Elastomere nicht beständig sind
- Einsatz bei Trockenlauf (aber: Schmierung setzt den Verschleiß herab!)
- Standardwerkstoff PTFE 561/10 f
 ür Bauform B2PT, PTFE mit 10% Kohlef
 üllung
- Sonderwerkstoffe auf Anfrage: für Bauform PTS und für den Einsatz in Motoren.

simrit®

Einflussfaktoren

Umfangsgeschwindigkeit der Welle

Die Umfangsgeschwindigkeit, gebildet aus Drehzahl und Durchmesser der Welle, ist der bestimmende Einfluss für die Festlegung von Bauform und Werkstoff der Simmerringe.

Ermittlung der Umfangsgeschwindigkeit "V" der Welle nach der Formel:

$$V (m/s) = \frac{Wellen-\emptyset D(mm) \times Drehzahl(1/min) \times \pi}{60000}$$

Zulässige Umfangsgeschwindigkeiten nach (→ Abb. 20).

Die angegebenen Werte sind Anhaltswerte.

Voraussetzung sind ausreichende Schmierung und gute Wärmeabfuhr. Bei ungünstigeren Bedingungen gelten entsprechend geringere Werte.

Drei Bereiche kennzeichnen die zulässigen Umfangsgeschwindigkeiten:

- Einsatz des Werkstoffes NBR
- Einsatz des Werkstoffes FKM
- Außerhalb beider Bereiche kein Einsatz von Simmerringen.

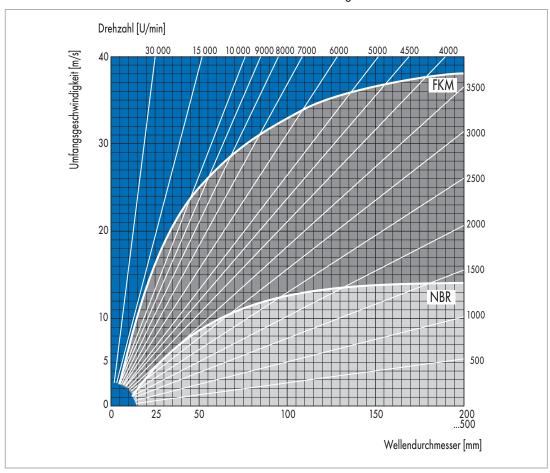


Abb. 20 Zulässige Umfangsgeschwindigkeit für Simmerringe (Richtwerte) aus den Werkstoffen NBR (72 NBR 902) und FKM (75 FKM 585) bei der Abdichtung von Motorenöl SAE 20

Temperatur

Aufgrund der Drehung der Welle und der dadurch erzeugten Reibungsleistung ist die Temperatur an der Dichtkante höher als im Ölbad.

Der Ölpegel im Aggregat bestimmt die Bedingungen der Wärmeabfuhr und damit die Temperatur an der Dichtkante. Der Bereich zwischen oberer und unterer Grenzkurve (→ Abb. 21) verdeutlicht den Bereich der gegenüber dem Ölbad möglichen höheren Temperatur bei unterschiedlicher Wärmeabfuhr:

- untere Grenzkurve für volle Umspülung der Welle
 obere Grenzkurve für Umspülung der Welle zu 25%
- Die für die einzelnen Medien angegebenen Bereiche beruhen auf deren unterschiedlicher Schmierfähigkeit und unterschiedlichem Wärmetransport.

Bei steigender Drehzahl und damit Umfangsgeschwindigkeit steigt die Temperatur an der Dichtkante (→ Abb. 22), gute Schmierung und guter Wärmetransport vorausgesetzt.

Bei steigendem Druck auf die Dichtlippe steigt damit die Temperatur an der Dichtkante; Anhaltswerte bei Vollwelle und guter Schmierung (→ Abb. 23). Bei Einsatz eines Simmerrings mit Schutzlippe kann es zusätzlich zu >20 °C an Übertemperatur kommen. Eine Überschreitung der für die einzelnen Werkstoffe

- starkem Verschleiß
- frühzeitiger Verhärtung der Dichtlippe und
- Verkürzung der Gebrauchsdauer.

zulässigen Temperaturen führt zu:

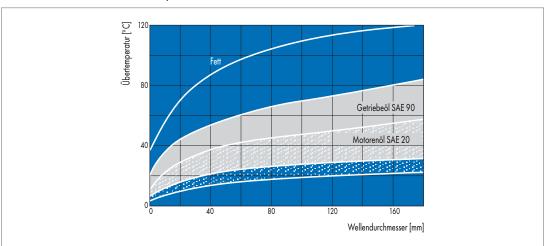


Abb. 21 Übertemperatur an der Dichtkante eines Simmerrings bei Abdichtung unterschiedlicher Medien Ölbadtemperatur 100 °C, Drehzahl 3000 U/min.

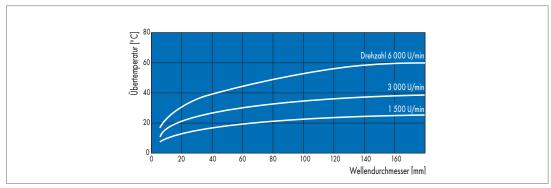


Abb. 22 Übertemperatur an der Dichtkante eines Simmerrings in Abhängigkeit von der Drehzahl Motorenöl SAE 20, Ölbadtemperatur 100 °C, Ölstand: Mitte Welle

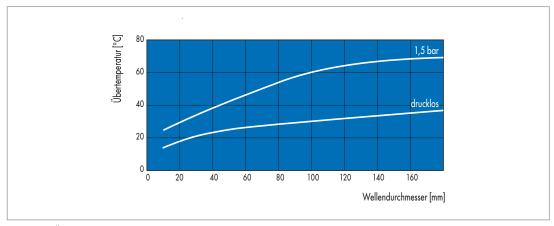


Abb. 23 Übertemperatur an der Dichtkante eines Simmerrings bei druckloser Abdichtung und bei Druckbeaufschlagung, Motorenöl: SAE 20, Drehzahl: 3000 U/min, Ölstand: Mitte Welle

Dichtheitsverhalten bei tiefen Temperaturen

Elastomere verlieren mit abnehmender Temperatur an Elastizität bis zum Glaszustand. Je nach Werkstoff liegt die Glasübergangstemperatur zwischen –10 bis – 40 °C. Der Einfriervorgang ist reversibel, d.h. der Werkstoff nimmt mit zunehmender Temperatur wieder seine ursprünglichen Eigenschaften an.

Bei Rotationsdichtungen entsteht durch die bei der Bewegung auftretende Reibung Wärme. Bei Temperaturen, bei denen an sich bereits die Gefahr der Verhärtung durch Einfrierung besteht, kann die Reibungswärme ausreichen, um die Dichtung elastisch zu erhalten oder nach dem Bewegungsbeginn rasch genug in einen funktionsfähigen Zustand zu bringen.

Aufgrund der in der Regel hohen Schmierstoffviskosität kommt es in der Praxis sehr selten zu Leckagen bei tiefen Temperaturen.

Ausnahme: bei sehr hohen Wellenauslenkungen.

ATEX-Anwendungen

- Die ATEX 100a (EG-Richtlinie 94/9/EG) trat am 01.07.2003 in Kraft.
- Die ATEX 100a gilt für die Konstruktion elektrischer, explosionsgeschützter Betriebsmittel, Geräte und Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgeschützten Bereichen.

Heiße Oberflächen (EN 1127-1)

Dazu wird u.a. beschrieben, dass es in explosionsfähigen Atmosphären zu einer Entzündung kommen kann, wenn heiße Oberflächen (z.B. Wellen) mit dieser in Kontakt kommen. Standard Simmerringe mit schleifender Schutzlippe können in Abhängigkeit der Umfangsgeschwindigkeit kurzzeitig Wellenoberflächentemperaturen von >120 °C erreichen.

Bitte nehmen sie mit uns Kontakt auf.

Druck

Mit steigendem Druck steigt die Anpressung der Dichtlippe, damit die Störung der Hydrodynamik unter der Dichtkante, die Reibung und Übertemperatur an der Dichtkante.

Die Druckbelastung p und die Umfangsgeschwindigkeit v bestimmen die Einsatzgrenzen der Dichtungen (→ Abb. 25).

Werden die jeweiligen Grenzwerte überschritten, ist mit vorzeitigem Verschleiß, frühzeitiger Verhärtung der Dichtlippe und einer Verkürzung der Gebrauchsdauer zu rechnen. Standard Simmerringe sind überwiegend für drucklosen Betrieb oder für den Einsatz bei sehr geringen Drücken ausgelegt. Maximale Druckbelastung: 0,02 bis 0,05 MPa.

Wird das Aggregat während des Betriebs so warm, dass die eingeschlossene Luft unter Druck gerät, ist der Einbau eines Entlüftungsventils zu empfehlen. Für einen abgegrenzten Bereich dieser Belastungen wird der Einsatz der Standard Bauform BABSL empfohlen. Kennzeichen dieser Dichtung ist eine kurze, dennoch flexible Dichtlippe. Diese Auslegung vermindert die Zunahme der Anpressung der Dichtlippe und damit der Reibleistung (→ Abb. 25).

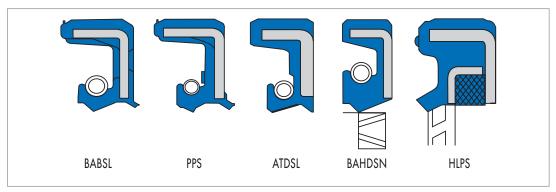


Abb. 24 Bauformen für druckbeaufschlagbare Simmerringe

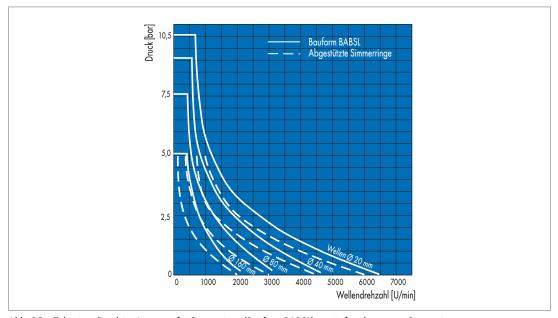


Abb. 25 Zulässiger Druck im Aggregat für Simmerringe (Bauform BABSL), sowie für abgestützte Simmerringe

Steht kein Simmerring BABSL zur Verfügung, kann die Dichtlippe der ohne Schutzlippe ausgelegten Bauformen durch einen Stützring abgestützt werden:
Der Stützring muss dem Dichtlippenprofil individuell exakt angepasst werden (→ Abb. 26). Bitte Stützringzeichnung anfordern. Zulässige Belastungen: (→ Abb. 25).

Bei höheren Druck/Geschwindigkeitsbelastungen werden Sonderformen mit einem jeweils höheren, aber eingeengten Funktionsbereich im p-v-Diagramm eingesetzt (\rightarrow Abb. 24).

Bauform PPS:

Weiterentwicklung der bewährten Bauform BABSL Leistungsspektrum bis zu 25% höher

Bauform PTS

p bis 10 bar, v_U bis 20 m/s, vorzugsweise bei Mangelschmierung und kritischen Medien wie z.B. HFC-Flüssigkeiten

Bauform BAHD:

p bis 150 bar, v_{II} bis 0,3 m/s

simrit*

Bauform HLPS:

p bis 220 bar v_U bis 0,2 m/s. Generell ist zu beachten, dass nicht alle Maximalwerte gemeinsam auftreten dürfen. Bitte anfragen. Für die Abdichtung von Vakuum ist die Schmierung der Dichtlippe durch eine Sperrflüssigkeit sicherzustellen. (→ Abb. 7). Diese wirkt gegenüber dem Vakuum wie eine Beaufschlagung der Dichtung durch Druck; der Einsatz der Bauform BABSL ist zu empfehlen.

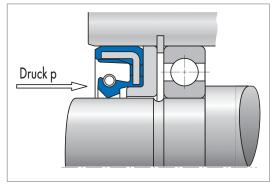


Abb. 26 Einbau eines Simmerrings mit Stützring

Abdichtung gegen Schmutz

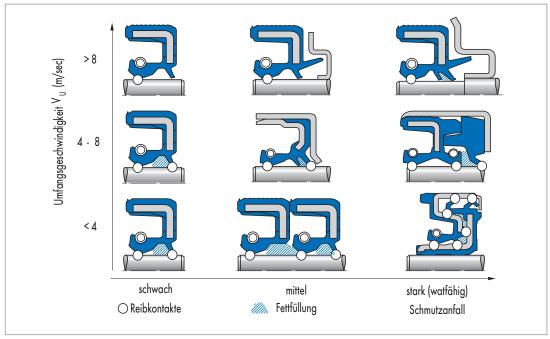


Abb. 27 Simmerringe zur sicheren Schmutzabdichtung

Abdichtung gegen Schmutz

Für die Abdichtung gegen Schmutz, Staub und Feuchtigkeit auf der Luftseite wird der Einsatz eines Simmerrings mit Schutzlippe empfohlen.

Bei Umfangsgeschwindigkeiten >8 m/s muss darauf geachtet werden, dass die Schutzlippe keinen Kontakt zur Welle hat.

Vor der Montage ist der Raum zwischen Dicht- und Schutzlippe zur Schmierung der Schutzlippe und Vermeidung von Korrosion der Welle zu ca. 40% mit Fett füllen. Empfehlung: Fett Petamo GHY 133 N der Fa. Klüber, München.

Zum Schutz gegen stärkeren Schmutz werden häufig zwei hintereinander eingebaute Simmerringe eingesetzt.

Weitere Lösungen: (→ Abb. 27)

- Bauform mit zusätzlicher axial gerichteter Schutzlippe:
 - Bei höheren Umfangsgeschwindigkeiten bildet die axiale Schutzlippe ein "Labyrinth" gegen den Schmutz mit dem entsprechend angepassten mit der Welle drehenden Schleuderblech.

- Bauform mit zusätzlicher axial gerichteter Schutzlippe:
 - verhindert den Schmutzzutritt durch Kontakt mit dem Schleuderblech oder dem radialen Schenkel des Antriebsflansches.
- Bauform mit zwei radialen Schutzlippen:
 - teilweise in zusätzliches Metallteil eingebaut, um den Schmutzzutritt zu erschweren.
- Bauform einer Kombination zweier ineinander gebauter Dichtungen:
 - mehrere zusätzliche Schutzlippen.
- Simmerring Combi Seal
 - mit zusätzlichem Schmutzabweiser aus verschleißfestem Polyurethan.
- Simmerring Cassette Seal unterschiedlicher Konstruktion:
 - gegen höchste Schmutzbelastung

Mit jeder zusätzlichen Schutzlippe mit Kontakt zur Gegenfläche steigt die Reibleistung und damit die erzeugte Wärme.

Deshalb: Prüfung, dass eine optimale Wärmeabfuhr gewährleistet ist.

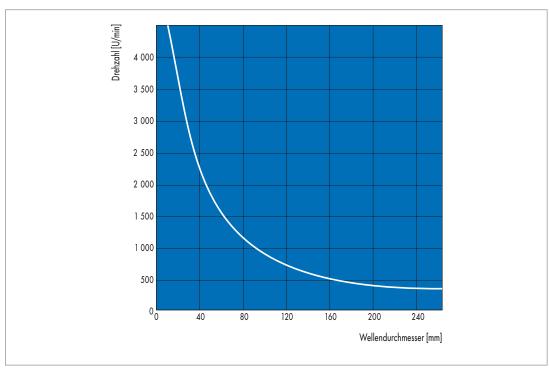


Abb. 28 Zulässige Drehzahlen bei umlaufenden Simmerringen an feststehenden Wellen Falls Grenzen überschritten werden, bitte Rücksprache!

Umlaufende Simmerringe

Bei Einbau von Dichtungen in umlaufende Gehäuse ist die geringere Anpressung bzw. das Abheben der Dichtlippe aufgrund der Zentrifugalkraft zu berücksichtigen. Zulässige Drehzahlen (→ Abb. 28).

Zulässige Grenzdrehzahlen bei denen die Dichtlippe von Standard Simmerringen abhebt (→ Abb. 28). Wird die Grenzdrehzahl überschritten, muss die Anpresskraft der Dichtlippe erhöht werden.

Einsatz von steiferen Dichtlippenprofilen, z.B. Simmerringe der Bauform BABSL, oder Verwendung einer stärkeren Feder.

Zur Ermittlung der notwendigen Informationen liegt ein Berechnungsprogramm vor: Bitte anfragen.

Leckage

Zu unterscheiden sind unterschiedliche Stadien der Leckage. Weitere Informationen sind auf Anfrage erhältlich:

- dicht: keine Feuchtigkeit an der Dichtung erkennbar
- feucht: funktionsbedingter Feuchtigkeitsfilm im Bereich der Dichtkante, jedoch nicht über die Bodenfläche hinausgehend
- nass:
 Feuchtigkeitsfilm über die Bodenseite hinausgehend mit Tropfenbildung, aber nicht abtropfend
- messbare Leckage: erkennbares, kleines Rinnsal auf der Außenseite des Gehäuses ausgehend von der Bodenseite der Dichtung
- vorübergehende Leckage: kurzfristige Störung des Dichtsystems, z.B. durch kleine Schmutzpartikel unter der Dichtkante, die bei weiterem Betrieb weggewaschen werden
- Scheinleckage: vorübergehende Leckage, die auf zu hohe Fettfüllung zwischen Dicht- und Schutzlippe zurückzuführen ist. Die überflüssige Fettmenge tritt als scheinbare Leckage nach außen

Ursachen für messbare Leckage können sein:

- Auf der statischen Seite unterschiedliche Ausdehnung von Dichtung und Gehäuse bei Nichteinhaltung der Toleranzen
- Materialrisse vor allem in der Dichtkante durch zu hohe Betriebsbedingungen
- Steigende oder zu hohe H\u00e4rte des Elastomers durch zu hohe Betriebsbedingungen und Unvertr\u00e4glichkeit mit dem abzudichtenden Medium
- Abnehmende oder zu geringe H\u00e4rte des Elastomers durch Quellung des Elastomers durch das abzudichtende Medium mit der Folge eines vorzeitigen Verschlei\u00dfes der Dichtung
- Korrosion der Welle bis unter die Dichtkante und damit dauernde Störung des Dichtsystems
- Ausfall des Schmiermittels mit daraus folgendem Trockenlauf und schnellem Dichtlippenverschleiß
- Alterung der Paarung: Elastomer abzudichtendes Medium
- Bildung von "Ölkohle" im Bereich der Dichtkante, die dadurch aufschwimmt, mit der Folge der Störung des Dichtsystems
- Schwingungen im Aggregat und der Welle, denen die Dichtlippe nicht mehr folgen kann
- Permanenter Schmutzanfall an der Dichtlippe von innen oder außen mit der Folge des vorzeitigen Verschleißes der Dichtlippe
- Vorzeitiger Verschleiß der Dichtlippe durch Nichteinhaltung der Vorschriften für die Gestaltung der Lauffläche auf der Welle (→ Gestaltung der Welle, Seite 45)
- Beschädigung der Dichtkante bei Transport, Handling und Montage

Diese Ursachen sind je nach Laufzeit als

- Frühausfälle
- vorzeitige Ausfälle
- Ausfälle während des Betriebes oder
- Lebensende

des Verschleißteils Dichtung zu analysieren und zu bewerten.

Gestaltung der Welle

Die Gestaltung der Welle im Bereich der Gegenlauffläche der Dichtlippe als Partner der Dichtung beeinflusst die Dichtfunktion und die Gebrauchsdauer des Dichtsystems entscheidend (→ Abb. 30).

Rauheit der Oberfläche

Zulässige Werte: $R_Z = 1.0 ... 5.0 \mu m$

 $R_{\alpha} = 0.2 ... 0.8 \ \mu m$

 $R_{max} \leq 6.3 \mu m$

bei Druckbelastung > 0,1 Mpa: $R_Z = 1,0 ... 3,0 \mu m$

 R_{α} = 0,2 ... 0,4 μm

 $R_{\text{max}} = 6.3 \, \mu \text{m}$

Entscheidend für die Funktion des Dichtsystems ist die Einhaltung der Werte für die absolute Rauhtiefe. Zu große Rauhtiefe erzeugt hohen vorzeitigen Verschleiß der Dichtlippe und hohe Leckage. Bei zu geringer Rauhtiefe (besonders bei höherer Umfangsgeschwindigkeit) besteht die Gefahr der Störung des Transports von Schmiermittel in den Bereich der Dichtkante mit der Folge von Verhärtung und Rissbildung, bis hin zu Verbrennungserscheinungen an der Dichtkante.

Toleranzen

Toleranz für die Welle: ISO h 11 Toleranz für die Rundheit: IT 8

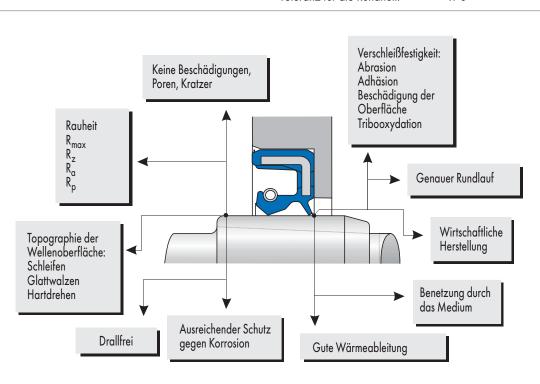


Abb. 29 Anforderungen an die Gestaltung der Welle als Gegenlaufstelle für Simmerringe

Werkstoffe der Welle

Geeignet sind:

- die im Maschinenbau üblichen Stähle, z.B. C35 und C45
- Gusswerkstoffe wie Kugelgrafit- und Temperguss (Voraussetzung ist Lunkerfreiheit und Porentiefe
 <0.05 mm)
- Aufgespritzte Hartmetallschichten (Voraussetzung ist eine Porentiefe <0,05 mm und gute Haftung auf dem Grundwerkstoff)
- Beschichtungen durch CVD- und PVD-Verfahren sowie anodisch aufgebrachte Schichten werden positiv beurteilt.

Die Werte für die Rauheit müssen eingehalten sein. Für Wasserabdichtung bei niedrigen Umfangsgeschwindigkeiten NE-Werkstoffe, z.B. MS 58 H, verwenden. Besser sind rostfreie Stähle, z.B. Werkstoff Nr. 1.4300 und 1.4112 (härtbar). Keramikbuchsen sind sehr verschleißfest und haben sich in Sonderfällen bewährt. Voraussetzungen sind die Einhaltung der Werte für die Rauhigkeit und eine gute Haftung zum Grundwerkstoff. Generell nicht geeignet sind:

- Hartchromschichten (wegen des teilweise ungleichmäßigen Verschleißes)
- Kunststoffe (wegen der sehr niedrigen Wärmeleitzahl, des dadurch gestörten Wärmetransports und der entstehenden großen Temperaturerhöhung an der Dichtkante sowie der möglichen Erweichung).

Härte

Für geringe Umfangsgeschwindigkeiten (<4 ... 5 m/s) ist der Lauf der Dichtlippe auf ungehärteten Wellen häufig möglich. Steigt das Kollektiv der Betriebsbedingungen, wird die Härtung der Welle unumgänglich.

■ Härte an der Oberfläche: >45 HRC

Bei verschmutzten Medien, Schmutz von außen oder Umfangsgeschwindigkeiten >12 m/s:

- Härte an der Oberfläche ca. 60 HRC
- Einsatztiefe der Härtung >0,3 mm

Wellenbearbeitung

Die richtige Bearbeitung der Welle ist ein entscheidender Faktor für die Funktionsfähigkeit des Dichtsystems. Weitere Informationen sind auf Anfrage erhältlich:

Einstichschleifen

Das überwiegend eingesetzte Verfahren ist das Einstichschleifen, da es bei vollständigem Ausfeuern am Ende des Schleifvorgangs die geforderte Drallfreiheit auf der Welle sicherstellt.

Prozessparameter und deren Auswirkungen (→ Tab. 4)

Hartdrehen

Überwiegend eingesetzt für Wellen, die nur in eine Richtung drehen, um die verbleibende Drallwirkung durch den Drehvorgang in Form einer eingängigen Schraube zur Unterstützung der Förderwirkung der Dichtung zu unterstützen.

Der Erfolg des Einsatzes dieses Verfahrens hängt ab von:

- der Einhaltung der Prozessparameter
- (→ Tab. 4/Tab. 5) der Sicherstellung, dass die Förderwirkung der Dichtung die Wirkung des restlichen Dralls der Welle übertrifft (Aggregatversuche werden dringend empfohlen).

Grund für den Einsatz dieses Verfahrens ist seine Wirtschaftlichkeit.

Weitere Verfahren sind

- Glattwalzen
- Strahlen
- Honen, Superfinishen und Schmirgeln.

Diese Verfahren sind nur zum geringen Teil als eine Gegenlauffläche für Simmerringe geeignet. Nähere Informationen auf Anfrage.

Drallfreiheit der Welle

Bei geschliffenen Wellen ist die orientierungsfreie Endbearbeitung der Lauffläche unbedingt erforderlich.

Diese sollte auf Drallfreiheit geprüft werden.

Die in (→ Abb. 30) beschriebene Drallprüfmethode hat sich in der Praxis bewährt.

Zu beachten ist, dass nicht alle kritischen Drallstrukturen erfasst werden können.

Prozessparameter	Auswirkung	Anstreben	Beachten
Drehzahlverhältnis Schleifscheibe/Werkstück	kann einen Drall erzeugen	nicht ganzzahlig z.B. 10,5:1	während des Prozesses über- prüfen
Drehzahl Werkstück Drehzahl Schleifscheibe		30 300 U/min 1500 1700 U/min	Werkzeug und Werkstück müssen gegensinnig rotieren
Abrichtvorschub	beeinflusst die Steigung des Fördergewindes	<0,02 mm/Umdrehung	nur in eine Richtung abziehen
Abrichtwerkzeug	kann Drallstruktur erzeugen	Vierkorndiamant, Einkorndiamant	
Abrichtzustellung	beeinflusst Rauheitswerte und Drallstruktur	ca. 0,02 mm	
Ausfeuerungszeit	beeinflusst Querschnitt des Fördergewindes	vollständiges Ausfeuern mindestens 30 s	häufigste Ursache für drall- behaftete Oberflächen
Zustelltiefe	kann Leckage hervorrufen	> als R _{max} vom vorherigen Bearbeitungsprozess	
Schleifscheibe/Körnung	beeinflusst die Rauheitsparameter R_{max} , R_{z} und R_{a}	Beispiel: 60 100 Edelkorund 60KL8V25 (weiß) Abmessungen 400 x 50 x 127	
Koaxialität der Werkzeug- und Werkstückachse	kann Drallstruktur auf der Oberfläche erzeugen	Koaxialität so klein wie möglich	

Tab. 4 Bearbeitungsrichtlinien für die geschliffene Oberfläche der Welle

Parameter	Werte	
Vorschub	0,03 0,10 mm	
Schnittgeschwindigkeit	100 300 m/min	
Radius	0,4 1,2 mm	
Schnitttiefe	max. 0,15 mm	
Material an der Wendeschneidplatte	CBN (Cubisch-Bor-Nitrid)	
Härte	55 62 HRC	
Anforderungen an die bearbeitete Oberfläche	R_a =0,1 0,8 μ m, R_z =1 4 μ m, R_{max} <8 μ m	
Keine Beschädigungen durch Späne oder stumpfes Werkzeug zulässig		

Tab. 5 Bearbeitungsparameter für hartgedrehte Wellen

Beschädigungen der Welle

Kratzer, Druckstellen, Rost und andere Beschädigungen im Bereich der Lauffläche der Dichtung führen zu Leckage.

Deshalb: Größte Sorgfalt für den Schutz der Welle von der Fertigung bis zur Endmontage durch Schutzhüllen und spezielle Transportvorrichtungen.

Koaxialität

Eine zu große Mittigkeitsabweichung zwischen Welle und aufnehmender Bohrung d.h. zu geringe Koaxialität führt zu einer ungleichmäßigen Verteilung der Anpressung über den Wellenumfang und damit zu einem einseitig stärkeren Verschleiß der Dichtlippe. Der örtliche Verlust der Anpressung kann die Dichtfunktion beeinträchtigen. Zulässige Werte (→ Abb. 32).

Prüfmethode mit folgenden	Parametern:	Prüfvorgang
Wellenlage:	horizontal ausrichten	1. Welle mit Öl leicht benetzen
Schmiermittel:	Welle mit dünnflüssigem Öl	2. Faden mit Gewicht aufhängen
	(z.B. Pentosin CHF 11S) benetzen	3. Welle einige Umdrehungen drehen
Faden:	Rosshaar, Angelschnur 0,1 mm	4. Auf Wellenunterseite mit Bleistift axiale Linie ziehen
Umschlingungswinkel		5. Welle ca. 20 Umdrehungen drehen lassen
des Fadens:	>180°, <270°	6. Axiale Bleistiftlinie auf Wischeffekte untersuchen
Gewicht:	30 g bei Wellen-Ø <100 mm	7. Vorgang mit umgekehrter Drehrichtung wiederholen
	50 g bei Wellen-Ø >100 mm	8. Bei Drallfreiheit ist kein Wischeffekt festzustellen
Drehzahl:	ca. 20 U/min mit Änderung der Drehrichtung	

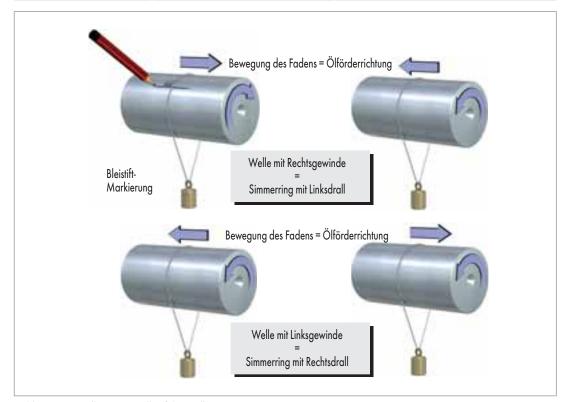


Abb. 30 Feststellung von Drall auf der Welle

Rundlaufabweichung

Rundlaufabweichung oder dynamische Exzentrizität sind möglichst zu vermeiden. Bei hohen Drehzahlen besteht die Gefahr, dass die Dichtlippe infolge ihrer Trägheit der Welle nicht mehr folgen kann. Die dabei entstehende Vergrößerung des Dichtspaltes zwischen Dichtkante und Welle führt ab einer bestimmten Größe zu Leckage. Deshalb ist das Lagerspiel möglichst klein zu halten. Die Dichtung ist in unmittelbarer Nähe des Lagers anzuordnen.

Zulässige Werte für die Rundabweichung (→ Abb. 32). Für die Bauform BABSL gelten eingeschränkte Werte (→ Abb. 33). Der Gesamtwert von Mittigkeits- und Rundlaufabweichung sollte <0,4 mm sein.

Fase

Empfohlener Wert: Winkel 15° bis 25° (\rightarrow Abb. 34) Durchmesser d₃ der Anschrägung (\rightarrow Abb. 34 und \rightarrow Tab. 6).

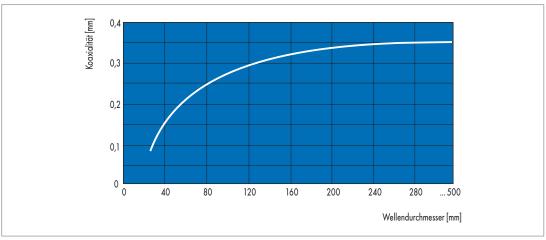


Abb. 31 Max. Abweichung der Koaxialität in Abhängigkeit vom Wellendurchmesser

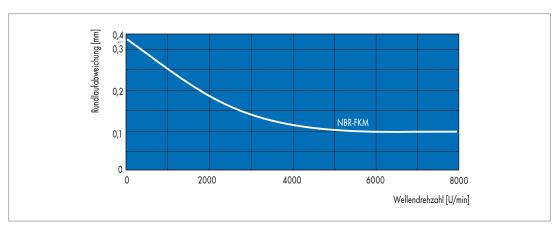


Abb. 32 Max. Rundlaufabweichungen der Welle in Abhängigkeit von der Drehzahl

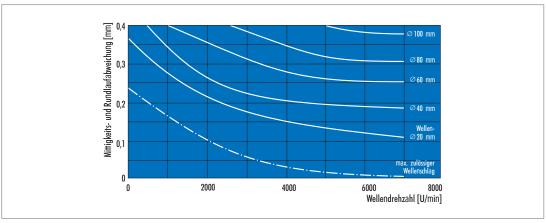


Abb. 33 Abweichung der Koaxialität und Rundlaufabweichung in Abhängigkeit von der Drehzahl für die Bauform BABSL

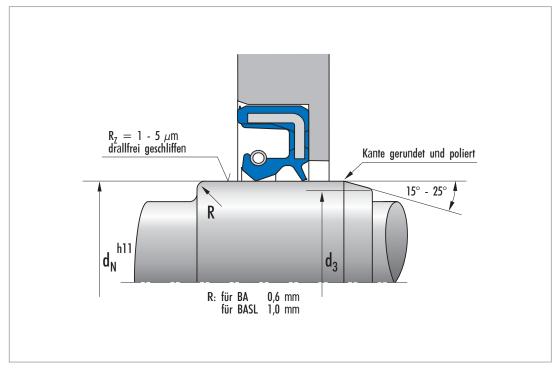


Abb. 34 Radius und Anschrägung der Welle

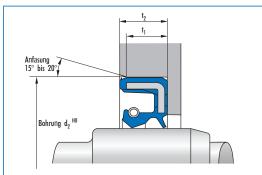
d _N [mm]	d ₃ [mm]
bis 10	dN −1,5
10 20	dN - 2,0
20 30	dN - 2,5
30 40	dN - 3,0
40 50	dN - 3,5
50 70	dN - 4,0
70 90	dN - 4,5
90 140	dN - 5,0
140 250	dN - 7,0
>250	dN - 11,0

Tab. 6 Durchmesser für die Anschrägung der Welle

Gestaltung der Aufnahmebohrung

Rauheit

Zulässige Werte: für die Bauformen BA und BASL


 R_{max} < 25 µm R_{α} = 1,6 ... 6,3 µm R_{τ} = 10 ... 25 µm

Für die Bauformen B1 und B1SL, B2 und B2SL

 $R_{max} < 16 \mu m$ $R_{a} = 0.8 ... 3.2 \mu m$ $R_{z} = 6.3 ... 16 \mu m$

Toleranz und Tiefe

ISO H8

, in the second second		
b	t _{1min} (0,85 x b)	t _{2min} (b + 0,3)
7	5,95	7,30
8	6,80	8,30
10	8,50	10,30
12	10,30	12,30
15	12,75	15,30
20	17,00	20,30

Abb. 35 Tiefe und Anschrägung der Aufnahmebohrung

Fase

- Empfohlener Wert: Winkel 15° ... 20° (→ Abb. 35)
- Die Übergänge sind gratfrei auszuführen
- Fasenlänge in Anlehnung an DIN 3760

Wärmedehnung

Bei Erwärmung wird die Überdeckung zwischen Gehäuse und Dichtung verringert, vor allem bei Gehäusen aus Leichtmetall, Kunststoff o.ä.

Deshalb wird in diesen Fällen der Einsatz der Bauform BA empfohlen, da diese aufgrund der größeren Überdeckung und des höheren Wärmeausdehnungskoeffizienten der Ausdehnung des Gehäuses besser folgen kann.

Geteilte Gehäuse

Der notwendige Ausgleich eines eventuellen Versatzes an der Teilfuge ist mit der Bauform BA am sichersten zu erreichen.

Steifigkeit

Beim Einbau von Simmerringen in dünnwandige Aufnahmebohrungen bzw. Aufnahmebohrungen mit geringer Elastizität oder Festigkeit, besteht die Gefahr, dass das Gehäuse aufgeweitet oder gesprengt wird. Deshalb Einsatz der Bauform BA und ggf. Änderung der Toleranz der Bohrung auf F8.

simrit

Simmerringe mit Dichtlippe aus PTFE

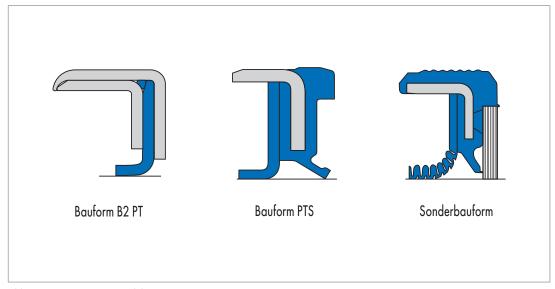


Abb. 36 Simmerringe mit Dichtlippe aus PTFE

Bauformen

Bauform B2PT

- Dichtmanschette aus PTFE: kohlegefüllt, hoch verschleissfest, reibungsarm.
- Werkstoff: PTFE 561/10 zwischen zwei Metallgehäuse fest eingespannt, zu Außendurchmesser exakt zentriert
- O-Ring aus FKM zur statischen Abdichtung
- Metallgehäuse: DIN EN 10088

Bauform PTS

- Teilgummiertes Gehäuse für die optimale statische Dichtheit im Gehäuse, kein Einkleben notwendig
- Dichtlippe aus speziellem PTFE, anvulkanisiert an das Elastomer, dadurch keine statische Leckage möglich
- Integrierte Schutzlippe
- PTFE- Dichtlippe mit und ohne Rückförderdrall
- Einsatz u.a. in druckbelasteten hydrostatischen Antrieben
- Auch zum Abdichten von biologisch abbaubaren Flüssigkeiten und HFC- Flüssigkeiten geeignet

Sonderbauform

- Dichtlippe aus speziellem PTFE, anvulkanisiert an das Elastomer, mit speziellem Rückförderdrall zur Minimierung der Reibung
- Schutzlippe optional aus Vlies, um die Bildung von Unterdruck hinter der Dichtkante zu vermeiden und die Reibung zu minimieren
- Einsatz vorwiegend als Kurbelwellendichtung in Motoren

Für alle Simmerringe mit PTFE-Dichtlippe stehen weitere anwendungsspezifisch abgestimmte PTFE-Compounds, z.B. für Lebensmitteleinsatz, zur Verfügung. Bitte anfragen.

Einsatz/Anwendungen

PTFE ist ein bewährter, thermisch hochbelastbarer Werkstoff, der keinerlei Interaktionen mit dem Schmierstoff eingeht.

Einsatz von Simmerringen mit einer Dichtlippe aus PTFE:

- bei Überschreitung der thermischen Einsatzgrenzen von Elastomeren
- bei chemisch/physikalischer Unverträglichkeit von Elastomer und Schmierstoff

Typische Anwendungen:

- Pumpen in der Chemieindustrie/Verfahrenstechnik
- Motoren (Kurbelwelle),
- hydrostatische Antriebe (Einsatz von HFC-Flüssigkeiten)
- Getriebe aller Art
- Drehdurchführungen (Luft)

Dichtmechanismus:

- Erreichung der erforderlichen Anpresskraft durch den Werkstoff-immanenten Memory-Effekt:
- Die im Betriebszustand auftretende Reibungswärme wirkt sich rückformend auf die aufgedehnte Dichtlippe aus.
- Auf eine Feder kann somit verzichtet werden.
- Anlage der Dichtlippe aus PTFE auf der Welle mit einer Laufspurbreite von ca. 2,5 mm.

Aber: das dynamische Dichtverhalten ist je nach Konstruktion z.T. begrenzt.

Beim Einsatz von PTFE-Dichtungen ohne integriertem Rückförderdrall muss je nach Betriebsbedingungen mit geringen Leckagen gerechnet werden.

Einsatzbedingungen

- thermische Belastbarkeit von −130 °C ... +200 °C
- Umfangsgeschwindigkeit: bis max. 30 m/s
- im Vergleich zu Elastomeren "stick-slip"-freies Verhalten
- Eignung
 - bei Mangelschmierung und Trockenlauf
 - in mit Reinigungsmitteln versetztem Wasser,
 - in Dämpfen, Kühlflüssigkeiten, Emulsionen
 - in Mineralölen, synthetischen Ölen und Fetten
- Beständigkeit
 - gegen aggressive Medien, wie u.a. S\u00e4uren, Laugen, L\u00f6sungsmittel. Ausnahme sind elementares Fluor und geschmolzene Alkalimetalle.
- Einsetzbarkeit
 - zur Abdichtung von Pulvern, Granulaten, Klebern und Harzen
- Anwendung
 - im Pharmazie- und Lebensmittelbereich

Simmerring Encoder-Elemente

Die Simmerring Encoder-Elemente erfassen zusammen mit aktiven Sensoren präzise Drehzahlen und Drehwinkel

Ausführung:

- Simmerring mit magnetisierbarem Elastomer oder
- Blechteil mit magnetisierbarem Elastomer

Einsatz:

- Anti-Blockiersystem
- Motormanagement
- Getriebemanagement

Vorteile:

- Funktionsintegration von Dichtung und Encoder
- Kompakte Bauweise
- Höhere Genauigkeit der Signale gegenüber den konventionellen, mechanischen Encoderrädern
- Erkennung der Drehrichtung, Drehzahl und Winkeleinstellung
- Unabhängigkeit des Signals von der Drehzahl
- Auflösung bis hin zur Geschwindigkeit "null"
- Größere Luftspalte können zugelassen werden
- Einsatz aktiver Sensoren

Werkstoffe:

- NBR- oder ACM-Elastomer für Simmerring und magnetisierbaren Encoder
- Versteifungsteil aus Stahl DIN EN10027-1 oder nichtrostendem Stahl DIN EN 10088
- Kombinationen verschiedener Elastomere mit jeweils optimalen Eigenschaften für Dichtprofil (NBR, HNBR, ACM, FKM) und Encoder-Element (NBR, ACM) sind möglich.

Das Design wird mit Hilfe modernster Auslegungsmethoden bestimmt. Die Kompetenz von der Auslegung der Dichtung und des Encoderelementes über die Magnetisierung bis hin zur Fertigung befindet sich ganzheitlich bei Simrit.

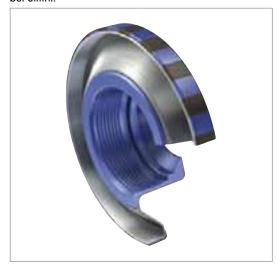


Abb. 37 Simmerring Encoder-Elemente

Vorauswahl Simmerringe Cassette Seal und Combi Seal

Auswahlkriterien für Combi und Cassette

Die wichtigsten Aspekte für die Auswahl von Simmerring Cassette und Combi Seal sind:

- Temperatur
- Umfangsgeschwindigkeit

- Axiales Spiel
- Montageprozedur
- Verschmutzungsgrad der Umgebung
- Spezielle Einsatzbedingungen müssen mit Simrit abgestimmt werden.

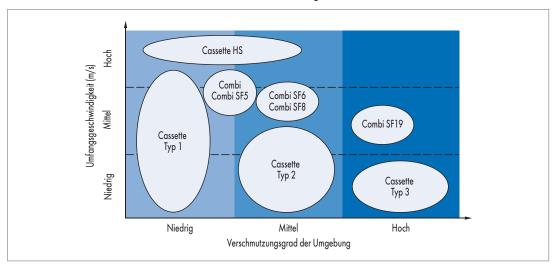


Abb. 38 Vorauswahl Simmerringe Cassette Seal und Simmerringe Combi Seal

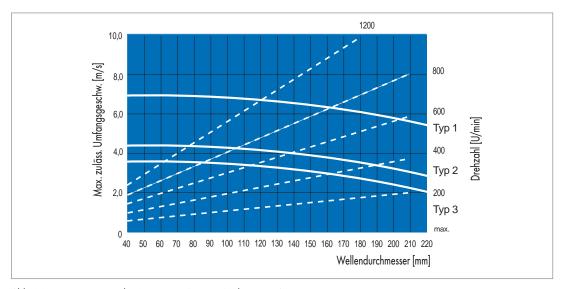
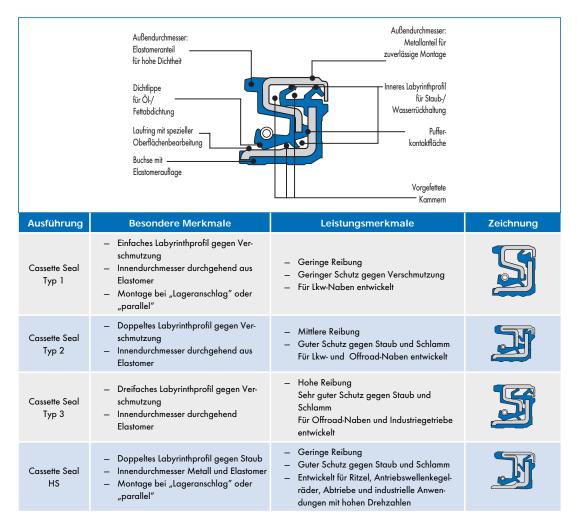


Abb. 39 Einsatzgrenzen der Simmerring Cassette Seal Typen in NBR


Simmerring Cassette Seal

Eigenschaften

simrit

- Hoher, mittlerer und niedriger Schutz vor Verschmutzung
- Integriertes Labyrinth zum Schutz vor Verschmutzung
- Einfache Montage; geringes Risiko, dass die Dichtung bei der Montage beschädigt wird
- Einfaches Handling; geringes Risiko, dass Dichtung beim Handling beschädigt wird

- Maximal 0,5 bar auf der Ölseite zulässig
- Ölabdichtung und Schutz vor Verschmutzung für verschiedene Umgebungsbedingungen und Drehzahlen
- Keine Axialbewegung während der Drehung zulässia
- Begrenzte Axialbewegung w\u00e4hrend der Dichtungsmontage zul\u00e4ssig.

Ausführung	Besondere Merkmale	Leistungsmerkmale	Zeichnung
Cassette Seal Soft Unitized	Axiales Labyrinthprofil gegen Verschmutzung Innendurchmesser Metall und Elastomer Dichtring und Laufring	 Geringe Reibung Guter Schutz gegen Staub und Schlamm Für Naben, Ritzel und Abtriebe entwickelt, wenn die Montage nicht die Nutzung der Cassette HS zulässt 	
Cassette Seal PTFE	PTFE-Dichtlippe mit DrallSchutzlippe aus FKM oder Vlies	 Hoher Schutz gegen Staub- oder Schmutzeintritt sicheres Handling und einfache Montage Einsatzbeispiele: Kurbelwellendichtung in Dieselmotoren 	S
Cassette Seal Casco	 Schutz vor eindringendem Staub durch Vlies oder Kautschuklippe Axiale Dichtlippe aus Elastomer Montage muss "parallel" erfolgen 	 Äußerst geringe Reibung Geringe Empfindlichkeit gegenüber axialer/radialer Exzentrizität Für Dieselmotoren entwickelt Dichtung für nur eine Drehrichtung der Welle 	

Abb. 40 Simmerring Cassette Seal in angetriebenen Achsen

simrit

Simmerring Cassette Seal HS

Eigenschaften

- Innendurchmesser aus Metall und Elastomer
- Hohe Drehzahlen und Temperaturen zulässig
- Guter Schutz vor Verschmutzung
- Dichtung für nur eine oder beide Drehrichtungen der Welle
- Öl-/Fettabdichtung bei hohen Drehzahlen und Temperaturen
- Für hohe Wärmeableitung von der Dichtkante.

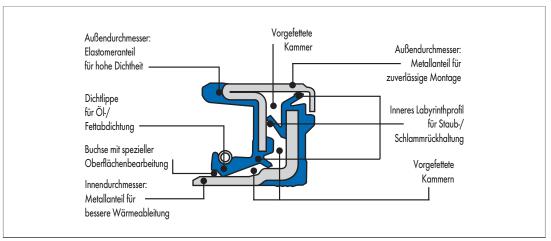


Abb. 41 Simmerring Cassette Seal HS (high speed)

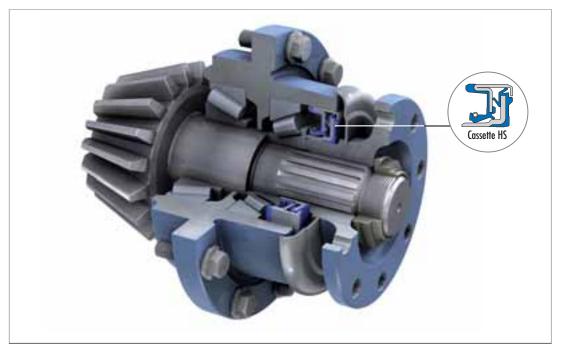
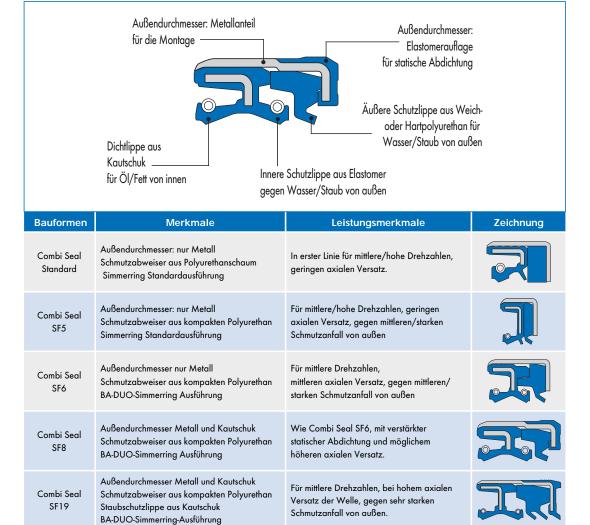


Abb. 42 Einsatz des Simmerring Cassette Seals als Ritzelabdichtung in Achsen


Simmerring Combi Seal

Eigenschaften

Simmerring Combi Seal ist eine "Unitized"-Dichtung für verbesserten Schutz vor Verschmutzung. Sie besteht aus:

- einem Dichtring (Standard-Bauform oder Bauform BA DUO)
- einem Schmutzabweiser aus Polyurethan
- einem "Unitized"-Gehäuse
- Öldichtung für mittlere Drehzahlen und verschmutzte Umgebungen

Kann axialen Versatz der Welle während der Drehung tolerieren

simrit*

Simmerring Combi Seal SF19

Eigenschaften

 Flexiblerer Schmutzabweiser aus Polyurethan, der der Wellendynamik folgt

- Integrierter Elastomer-Schmutzabweiser, der als erstes Element, das Eindringen von Schmutz in das Gehäuse verhindert
- Höherer axialer Versatz der Welle zulässig
- Sehr hoher Schutz gegen Verschmutzung
- Für Umgebungen mit hohen Anforderungen

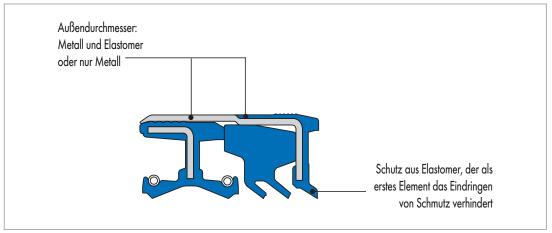


Abb. 43 Simmerring Combi Seal SF19

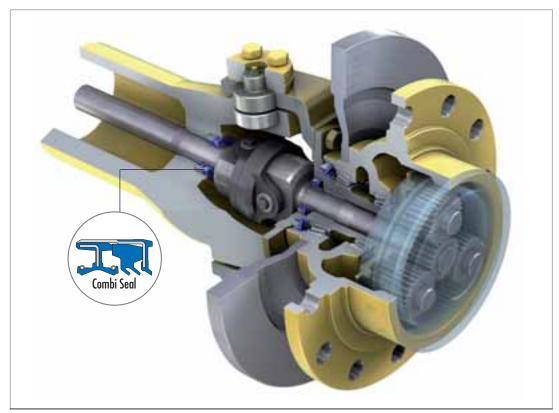


Abb. 44 Simmerring Combi Seal in angetriebenen Achsen

Handling und Montage von Simmerringen

Wichtig ist, während des Handlings und der Montage den Kontakt des Simmerrings, besonders der Dichtlippe mit scharfen Kanten und jeglicher Verschmutzung zu vermeiden.

Die Aufzählung der möglichen Störstellen bei Handling und Montage von Simmerringen beim Anwender soll dazu dienen, diese zu erkennen und Abstellmaßnahmen für folgende Schwerpunkte zu treffen → Fehlerbehandlung, Seite 68.

Wareneingang

- Lagerung
- Transport
- Zwischenlagerung am Montageplatz
- Vorbereitung für die Montage
- Montageplatz
- Laufstelle des Simmerrings
- Gehäusebohrung
- Handling von Aggregaten

Handling

Die Vielzahl der möglichen Störstellen beinhaltet zahlreiche Hinweise, die auf den ersten Blick trivial erscheinen. In der praktischen Handhabung wird aber die notwendige Sorgfalt dennoch häufig vernachlässigt. Aus der umfangreichen Zahl der Hinweise einige Beispiele:

- Auf beschädigte Verpackung achten
- Dichtungen möglichst bis zur Montage in der Verpackung belassen
- Dichtungen nicht lose liegen lassen
- Dichtungen vor Staub und Schmutz schützen

- Befettete Dichtungen verschlossen oder abgedeckt aufbewahren
- Nur sauberes Fett oder Öl verwenden
- Übermäßige Befettung vermeiden
- Dichtkante nicht mit scharfen Kanten oder beschädigtem Montagewerkzeug in Kontakt bringen
- Vermeidung von Metallspänen
- Scharfkantige Fasen an Welle und Bohrung sind nicht zulässig
- Beschädigungen und Korrosion von Welle und Bohrung sind nicht zulässig
- Auf Fluchtung von Bohrung und Welle achten

Ausbildung der Dichtstelle

Für die überwiegende Zahl der Einsatzfälle ist nur eine Dichtung erforderlich.

Für vertikal oder schräg gestellte Wellen wird für die Dichtstellen, die unterhalb des Ölspiegels liegen, der Einbau von zwei Dichtungen hintereinander in gleicher Einbaurichtung empfohlen.

Der Raum zwischen den Dichtungen ist als Schmierkammer auszubilden. Eine Nachschmiermöglichkeit wird empfohlen.

Der Simmerring kann nur Abdichtaufgaben erfüllen und ist weder zur Führung von Maschinenteilen noch zur Übertragung axialer Kräfte geeignet.

Der Simmerring und die zugehörige Laufstelle der Welle sind vor der Montage einzufetten, um die Schmierung für die ersten Umdrehungen der Welle sicherzustellen.

Im Aggregat darf sich kein unzulässig hoher Druck aufbauen. Zu hoher Druck verkürzt die Lebensdauer. Steht kein ausreichender Ausdehnungsraum zur Verfügung, ist das Gehäuse zu entlüften.

Abb. 45 Montage mit hydraulischem oder pneumatischem Einpressstempel. Durchmesser des metallischen Anschlags 5 mm bis 10 mm größer als Außendurchmesser (d₂) der Dichtung

Einpressen in das Gehäuse

Wir empfehlen das Einpressen in die Bohrung mit Hilfe einer mechanischen, pneumatischen oder hydraulischen Einpressvorrichtung und eines Einpressstempels (→ Abb. 45).

Die Achse des Einpressstempels ist die Achse der Bohrung. Eine Schrägstellung ist nicht zulässig (→ Abb. 47).

Ein metallischer Anschlag (Einpressstempel – Gehäuse) muss vorhanden sein (→ Abb. 45, → Abb. 46).

Abb. 46 Montage Bodenseite voraus. Außendurchmesser des Montagedorns ca. 0,5 mm kleiner als der Innenaus-kleidungsdurchmesser der Dichtung. Im Bedarfsfall bei uns zu erfragen.

Falls dies nicht möglich ist, muss für einen metallischen Anschlag an der Unterseite der Montagevorrichtung gesorgt werden. Besonders bei Montage "Bodenseite voraus" muss die Einpresskraft möglichst nahe am Außendurchmesser der Dichtung angreifen. Der Durchmesser des Einpressstempels muss entsprechend groß gewählt werden (→ Abb. 45, → Abb. 46), im Bedarfsfall bitte anfragen.

Bei zu kleinem Durchmesser des Einpressstempels besteht die Gefahr, dass die Dichtung verbogen wird (→ Abb. 48).

Abb. 47 Nicht zulässige schiefe Montage SO BITTE NICHT!



Abb. 48 Zu kleiner Durchmesser des Einpressstempels SO BITTE NICHT!

Abb. 49 Zulässige Hammermontage
MONTAGEPLATTE VERWENDEN!

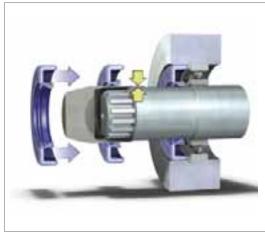


Abb. 50 Montage über eine Welle mit Nut-Federverbindung (auch bei scharfkantigem Wellenabsatz)

Bei Hammermontage (häufig bei großen Dichtungen) ist mit einer Montageplatte zu arbeiten (→ Abb. 49). Bei zu hoher punktförmiger Belastung während der Montage besteht die Gefahr, dass die Dichtung verbogen wird (→ Abb. 47).

Beim Einkleben der Dichtung in das Gehäuse darf der Klebstoff auf keinen Fall auf die Welle oder an die Dichtlippe gelangen.

Montage der Welle

- Bei Montage über die Nut einer Nut- und Federverbindung auf der Welle muss die Nut mit einer Schutzkappe abgedeckt sein (→ Abb. 51), um eine Verletzung der Dichtlippe zu vermeiden.
- Wandstärke der Schutzkappe <0,5 mm, um eine Überdehnung der Dichtlippe zu vermeiden.
- Bei Montage eines Aggregatteils mit bereits vormontierter Dichtung sollte ein Zentrierbolzen eingesetzt werden, um ein Verkanten und damit die Verletzung der Dichtlippe zu vermeiden.
- Bei Montage einer langen Welle ist der Einsatz einer Führungsplatte zur parallelen Führung der Welle zu empfehlen, um eine unzulässige Verformung der Dichtlippe zu vermeiden.

Werden Teile des Aggregats mit einer Presspassung und gleichem Nenndurchmesser über die Lauffläche geschoben, ist der Durchmesser der Lauffläche um 0,2 mm zu vermindern, um eine Beschädigung der Lauffläche zu vermeiden. Die Funktion der Dichtung wird durch die Verringerung des Durchmessers nicht beeinträchtigt.

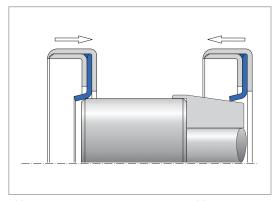


Abb. 51 Montage eines Simmerrings mit Dichtlippe aus PTFE

Montage von Simmerringen mit Dichtlippe aus PTFE

Für die Montage von Simmerringen mit Dichtlippe aus PTFE gelten die gleichen Richtlinien wie für Simmerringe mit Dichtlippe aus Elastomer gemäß DIN 3760.

Wichtig ist, dass die Dichtlippe aus PTFE speziell bei der Montage mit der Stirnseite in Montagerichtung nicht beschädigt wird. Empfohlen wird die Verwendung eines Montagedorns mit einer Auflaufschräge von 10° ... 15° (→ Abb. 51).

Austausch von Simmerringen

anderen Einpresstiefe in die Bohrung.

Bei Reparatur bzw. Überholung eines Aggregats müssen grundsätzlich neue Dichtungen eingebaut werden. Die Dichtlippe des neuen Rings darf nicht auf der alten Laufstelle zur Anlage kommen. Maßnahmen hierzu sind:
Einbau von Distanzringen (→. Abb. 52)
Austausch von Wellenbuchsen oder Wahl einer

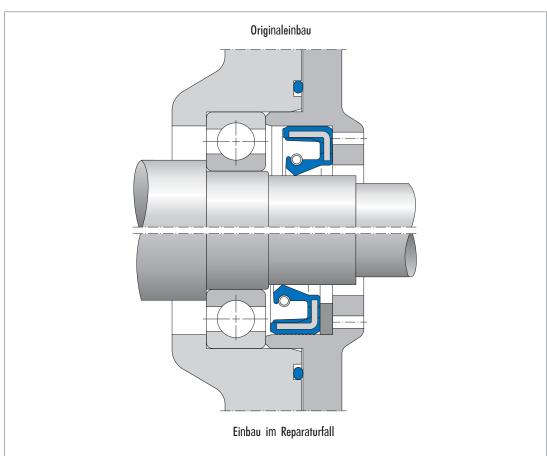


Abb. 52 Montage bei Reparatur und Montage des Aggregats

Montage von Simmerring Combi Seal

Bohrungsanforderungen für Standard, Simmerring Combi Seal SF5 und SF6

Toleranz: ISO H8

Fase: $20^{\circ} \pm 5^{\circ} \times 1,5 \text{ mm}$ Rauheit: $0,8 < R_{\alpha} < 3,2 \mu m$

6,3 < R_z < 16 µm R_{max} < 16 µm

Anforderungen an die Welle

- Es gelten die Anforderungen wie für Standard Simmerringe
- Wellenhärtung erforderlich

Handling

 Vorsichtig vorgehen, damit die Dichtlippen beim Handling und beim Einsetzen der Welle nicht beschädigt werden (gilt besonders für Vielkeilwellen)

Bohrungsanforderungen für Simmerring Combi Seal SF8 und SF19

Toleranz: ISO H8

Fase: $20^{\circ} \pm 5^{\circ} \times 1,5 \text{ mm}$ Rauheit: $1,6 < R_a < 6,3 \mu m$

 $10 < R_z < 25 \mu m$

 R_{max} <25 μm

Montageprozedur

- Es gelten die gleichen Montageanweisungen wie für Standard-Simmerringe
- Vorsicht beim Einsetzen der Welle, um die Polyurethan-Lippe nicht zu verbiegen
- Anweisungen für die Demontage bitte anfragen (Luftseite zuerst)

Austausch

- Wenn ein Simmerring Combi Seal ausgetauscht wird, muss die Welle ersetzt/erneuert werden, um die Forderungen an Härte und Toleranz zu erfüllen
- Für Standard Simmerring Combi Seal SF5 und SF6 ist ein Dichtmittel am Außendurchmesser erforderlich

simrit

Montage von Simmerring Cassette Seal

Anforderungen an Welle und Bohrung

Toleranz: ISO H8/h8
Bohrungsfase: 20° ± 5° x 1 mm
Wellenfase: 20° ± 5° x 3 mm
Rauheit: 0,8 <R_a <3,2 µm
10 <R_z <16 µm

 R_{max} der Bohrung <16 μ m R_{max} der Welle <25 μ m

Handling

- Die Feder darf nicht entfernt werden
- Nicht versuchen, die Dichtung zu öffnen
- Dichtungen gestapelt lagern

Montagearten

- erster Schritt: Einpressen in die Gehäusebohrung,
 - zweiter Schritt: Montage der Welle
 (→ Abb. 53, 54)

- erster Schritt: Montage auf der Welle
 - zweiter Schritt: Einpressen in die Gehäusebohrung (Diese Version muss mit Simrit abgestimmt werden)
- parallele Montage (→ Abb. 55)
- Montage bei Lageranschlag
- für "soft unitized"-Ausführungen:
 - erster Schritt: Montage des Laufrings auf der Welle
 - zweiter Schritt: Montage des Dichtrings in die Gehäusebohrung. (Diese Version muss mit Simrit abgestimmt werden)

Austausch

- Keine Nachbearbeitung oder Ersatz der Welle erforderlich
- Bei Bauformen, die einen Laufring ohne Elastomerauflage am Innendurchmesser besitzen, kann ein. Dichtmittel auf dem Innendurchmesser erforderlich werden.

Montage Fall A (mit "bearing stop")

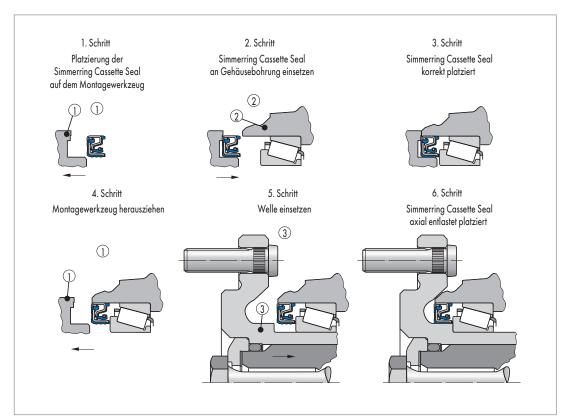


Abb. 53 Montage von Simmerring Cassette Seal – Fall A (mit "bearing stop")

Montage Fall B (ohne "bearing stop")

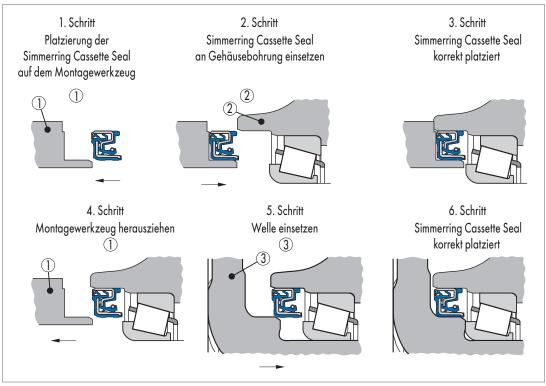


Abb. 54 Montage von Simmerring Cassette Seal – Fall B (ohne "bearing stop")

Montage Fall C ("parallel")

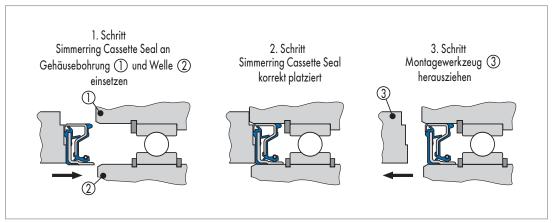


Abb. 55 Montage von Simmerring Cassette Seal – Fall C ("parallel")

Fehlerbehandlung

(Fehlerquellen und empfohlene Abstellmaßnahmen) Die Zusammenstellung von möglichen Störstellen während der Montage und des Handlings von Simmerringen beim Anwender soll unseren Kunden helfen, Störstellen zu erkennen und entsprechende Abstellmaßnahmen zu treffen.

zung

Bitte nehmen Sie unsere technische Beratung in Anspruch.

Fehlerquelle	Möglicher Fehler	Folgen auf die Dichtfunktion	Ursache der Schwachstelle	Abstellmaßnahme
Wareneingang				
Beschädigung der Verpackung	Verschmutzung von Simmerringen	Verkürzte Lebensdauer bis sofortige Leckage	Transportverpackung nicht in Ordnung	Prüfung der Teile auf Ver- schmutzung, visuelle und maßliche Veränderungen, Handling verbessern, Verpackung optimieren
0 0.0	Mengen über länge (Verbrauchsmenge	ere Zeit)/ n, Bereitstellung für	die Montage)	
Nichteinhaltung der Lagerbedingungen nach DIN 7716	Einbau von fehlerhaften Simmerringen	Verkürzte Lebensdauer	Nichteinhaltung von Lagerbedingungen	Lagerbedingungen nach DIN 7716 unbedingt einhalten
Verschmutzung von Simmerringen	Einbau und Verwendung von verschmutzten Simmerringen	Kein Einfluss bis sofortige Leckage sowie verkürzte Lebensdauer	Staub, Schmutz	Simmerring vor dem Einbau mit geeignetem Reinigungsmittel säubern (DIN 7716), Originalver- packung erst am Monta- geplatz öffnen
Beschädigung des Simmerrings	Einbau von beschädigten Simmerringen	Sofortige Leckage oder verkürzte Lebensdauer	Vorzeitige Alterung durch unsachgemäße Lagerung	Originalverpackung erst am Montageplatz öffnen
Transport (vom Zwi	ischenlager zum Mo	ontageplatz)		
Beschädigung der Verpackung	Verschmutzung von Simmerringen	Verkürzte Lebensdauer bis sofortige Leckage	Unsachgemäßes Handling	Sperrung und spezielle Freigabe von Teilen in beschädigten Kartons. Prüfung auf Verschmut-

Fehlerquelle	Möglicher Fehler	Folgen auf die Dichtfunktion	Ursache der Schwachstelle	Abstellmaßnahme
Zwischenlagerung	am Montageplatz (\	/erbrauchsmengen))	
Verschmutzung von Simmerringen	Einbau eines ver- schmutzten Simmerrings	Kein Einfluss bis sofortige Leckage wie auch ver- kürzte Lebensdauer durch verstärkten Verschleiß durch Staub, Schmutz	Staub, Schmutz aus der Umgebung	Simmerring vor dem Einbau mit geeignetem Reinigungsmittel säubern (DIN 7716)
Offene Lagerung vorge- fetteter Simmerringe	Verschmutzung des Fettes	Kein Einfluss bis sofortige Leckage sowie verkürzte Lebensdauer durch ver- stärkten Verschleiß	Staub, Schmutz aus der Umgebung	Verpackungseinheit immer abdecken, vor Staub und Schmutz schützen, nur die benö- tigte Verbrauchsmenge entnehmen
Ungeeigneter Vorrats- behälter	Verschmutzung, Beschä- digung des Simmerrings, Abspringen der Feder	Kein Einfluss bis sofortige Leckage sowie verkürzte Lebensdauer durch ver- stärkten Verschleiß	Ansammlung von Schmutz und Feuchtigkeit im Vorratsbehälter, scharf- kantige Ecken	Unten offene, leicht sau- ber zu haltende Behälter ohne scharfe Kanten
Vorbereitung des S	immerring für die N	/lontage		
Unsachgemäßes Öffnen bzw. Entnehmen aus Verpackung	Schnitte oder ähnliche Beschädigungen am Außendurchmesser, Abspringen der Feder, Einbau des Simmerrings ohne Feder	Sofortige Leckage bis verkürzte Lebensdauer, Verkürzung der Lebens- dauer	Scharfkantige oder unge- eignete Werkzeuge bzw. Methode zum Öffnen	Geeignete Verpackung und Werkzeug, beson- dere Vorsicht und Anwei- sung des Monteurs
Befettung des Simmerrings mit verschmutztem Öl bzw. Fett	Verschmutzung des Simmerrings	Sofortige Leckage bis ver- kürzte Lebensdauer durch erhöhten Verschleiß	Schmutz, Staub	Fettbehälter vor Ver- schmutzung schützen und bei Nichtbenutzung verschließen
Ungeeignetes Öl zum Benetzen der Welle oder Haftteil des Simmerrings	Chemischer Einfluss auf den Dichtungs-Werkstoff, Quietschen (stick-slip)	Verkürzte Lebensdauer durch erhöhten Verschleiß	Ungünstige Schmierung, keine (Kundenrekla- mation) Kontakt Öl mit dem Simmerring Werkstoff	Öl-Sorte mit Kundenbera- ter absprechen Auf keinen Fall Graphit- fett verwenden
Zuviel Fett zwischen Dicht- kante und Schutzlippe	Fettaustritt beim Einbau oder im Betrieb	"Scheinleckage"	Falsche Fettdosierung	Max. Fettmenge: ca. 40% des Fettraumes

Fehlerquelle	Möglicher Fehler	Folgen auf die Dichtfunktion	Ursache der Schwachstelle	Abstellmaßnahme
Kein oder zuwenig Fett	Ungenügende Schmie- rung der Schutzlippe, verstärkter Schmutzeintritt, Gummiabrieb	Verkürzte Lebensdauer durch überhöhte Tem- peraturen im Schutzlip- penbereich oder durch vorzeitigem Verschleiß	Falsche Anweisung oder falsche Dosiermenge	Fettmenge an Schutzlippe positionieren
Befettung an falscher Stelle	Ungenügende Schmie- rung der Schutzlippe	Verkürzte Lebensdauer durch überhöhte Tem- peraturen im Schutzlip- penbereich oder durch vorzeitigem Verschleiß, Scheinleckage	Falsche Anweisung oder falsche Dosiermenge. Falsche Befettungsein- richtung bzw. falscher Befettungsdorn	Vorgefettete Simmerringe verwenden, Konstruktion des Fettdo- sierers ändern
Aufbringen/+tragen des Fettes	Verschmutzung, che- mische Einflüsse, Beschä- digungen	Sofortige Leckage bis ver- kürzte Lebensdauer	Schmutz, Staub, Auftragswerkzeug, Reinigungswerkzeug, Beschädigungen oder scharfe Kanten am Be- fettungsdorn	Auf Sauberkeit achten, geeignete Werkzeuge. Information und Ausbil- dung des Montageper- sonals
Befettung eines Simmer- rings ohne Fettkammer	Scheinleckage	Keine	Nicht ausreichende/ falsche Information	Anderen Dichtungstyp wählen

Montage: Montagedorn/Montagevorrichtung/Montageplatz/Montageperson

Falsche Auslegung des Montagedorns	Beschädigung der Dich- tung, Abspringen der Feder. Schief eingebauter Sim- merring	Keine bis sofortige Leckage, verkürzte Lebensdauer, keine bis verkürzte Lebensdauer durch ungleichmäßigen Verschleiß	Anpassung: Simmerring-Welle-Gehäu- se-Montagedorn. Montagevorrichtung nicht in Ordnung	Abstimmung mit Simrit Vorschläge der DIN 3761 beachten, Katalogempfehlung von Simrit
Verschmutzter Monta- gedorn	Verschmutzung des Simmerrings bis hin zu Beschädigung	Frühausfälle oder verkürz- te Lebensdauer	Staub und Schmutz am Arbeitsplatz	Auf Sauberkeit achten, regelmäßige Reinigung des Montagedorns
Beschädigter Monta- gedorn	Beschädigung des Simmerrings	Sofortige Leckage bis ver- kürzte Lebensdauer	Montagedorn nicht in Ordnung	Regelmäßige Über- prüfung
Falscher Montagedorn	Beschädigung des Simmerrings	Sofortige Leckage bis ver- kürzte Lebensdauer	Verwechslung/keine Zuordnung: Simmerring- Montagedorn	Korrekte Montagean- weisung

Fehlerquelle	Möglicher Fehler	Folgen auf die Dichtfunktion	Ursache der Schwachstelle	Abstellmaßnahme
Zu hohe Montagege- schwindigkeit	Zurückfedern und/oder Schiefstellung des Simmerrings, Beschädi- gung am Außendurch- messer, Abspringen der Feder	Ungleichmäßiger Ver- schleiß, verkürzte Lebens- dauer, statische Leckage	Montagegeschwindig- keit/Hammermontage	Empfohlene max. Geschwindigkeit einhalten
Zu hohe Einpresskraft bei einer Montage auf Anschlag	Beschädigung des Sim- merrings (Verbiegen des Metallteils)	Sofortige Leckage bis ver- kürzte Lebensdauer	Einpresskraft zu hoch/ Montage auf Anschlag	Einpresskraft verringern/ Kraftbegrenzung/End- anschlag am Montage- dorn/nicht auf Anschlag einpressen: Wegbegrenzung
Einpressweg zu kurz/ zu lang	Dichtlippe und Staublip- pen laufen an falscher Stelle	Kein Einfluss bis sofortige Ausfälle/Frühausfälle	Montagedorn oder Montageeinrichtung nicht in Ordnung	Simmerring auf korrekten Sitz kontrollieren/Ein- pressweg danach einstellen
Hammermontage	Beschädigung des Simmerrings und des Ein- bauraumes/Abspringen der Feder, Schiefstellung	Sofortiger Ausfall bis ver- kürzte Lebensdauer	Unsachgemäße Montage	In einer Serienfertigung sollte eine Hammermonta- ge nicht angewendet wer- den/für den Reparaturfall bei Hammermontage eine stabile Dichtungsausle- gung wählen
Montageplatz unsauber (Zigarettenasche)/scharfe Kanten/Metallspäne	Dichtung oder Montage- einrichtung verschmutzt oder beschädigt	Sofortausfälle bis verkürz- te Lebensdauer	Schmutz, scharfe Kanten	Montageplatz sauber und beschädigungsfrei halten. Qualifikation/klare und einfach dargestellte An- weisungen: Visualisierung/ Sensibilisierung für Dichtelemente

Fehlerquelle	Möglicher Fehler	Folgen auf die Dichtfunktion	Ursache der Schwachstelle	Abstellmaßnahme
Simmerring Laufste	elle (Welle) am Mon	tageplatz		
Verkratzte Welle	Beschädigung der Dicht- lippe beim Einführen der Welle	Sofortausfälle bis verkürz- te Lebensdauer	Transportschaden/feh- lender Wellenschutz/un- sachgemäße Lagerung und Handling der Welle	Welle vor Einbau über- prüfen/DIN 3761 beach- ten/geeignete Schutzhül- len und Transportbehälter verwenden/ Wellen nicht als Schüttgut lagern oder transportieren
Verschmutzte Welle	Beschädigung und Verschmutzung der Dichtlippe beim Einführen der Welle	Sofortausfälle bis verkürz- te Lebensdauer	Kein Wellenschutz/unge- eignete Transportbehäl- ter/unsauberes Handling	Welle vor dem Einbau säubern/geeignete Schutzhüllen und Trans- portbehälter verwenden
Korrodierte Welle	Beschädigung und Verschmutzung der Dichtlippe beim Einführen der Welle	Sofortausfälle bis verkürz- te Lebensdauer	Kein oder ungenügender Korrosionsschutz/zu hohe Luftfeuchtigkeit/zu lange Lagerung/ungeeignete Transportbehälter oder fehlende Abdeckung	Wellen vor der Mon- tage auf Korrosion überprüfen/korrodierte Wellen auf keinen Fall verwenden/geeignete Korrosionsschutzmittel einsetzen/Nacharbeit von korrodierten Wellen
Korrosionsschutzmittel	Chemische Reaktion mit dem Simmerring Werk- stoff oder dem abzudicht- enden Öl	Verkürzte Lebensdauer	Ungeeignete Werkstoff- paarungen bzw. Korrosi- onsschutzmittel	Abstimmung mit Simrit/ Korrosionsschutzmittel im Labor auf Verträglichkeit mit dem Simmerring Werkstoff testen
Montage der Welle, schlechtes Aufgleiten der Simmerring Dichtlippe bzw. der Staublippe auf die Welle	Abspringen der Feder/ Umstülpen der Staublippe	Verkürzte Lebensdauer	Ungenügende Schmie- rung/Anfasung der Welle nicht in Ordnung/zu große SI-Überdeckung/ falsche Auslegung des Simmerrings	Ausreichende Schmierung von Simmerring und Wel- le/Simrit Empfehlung zur Anfasung der Welle be- achten/Simmerring Kon- struktion mit der Montage sowie dem Einbauraum abstimmen
Verdeckte Montage: lange Wellen/schwere Wellen/Verkippen der Welle	Abspringen der Feder/ Umstülpen der Dichtlippe oder Staublippe/Schief- stellung oder Beschädi- gung des Simmerrings	Verkürzte Lebensdauer bis Sofortausfall	Ungenügende Führung der Welle	Simmerring Konstruktion mit der Montage sowie dem Einbauraum abstim- men/geeignetes Dich- tungskonzept wählen

Fehlerquelle	Möglicher Fehler	Folgen auf die Dichtfunktion	Ursache der Schwachstelle	Abstellmaßnahme
Gehäusebohrung				
Zweigeteiltes Gehäuse	Kombination mit falscher Simmerring-Haftteilaus- führung	Statische Leckage	Ungeeignete Haftteilaus- führung	Einteiliges Gehäuse/Au- ßengummierung oder Teilgummierung wählen/ Dichtlack oder Klebstoff sind hier ungeeignet
Gussgehäuse	Poren/Lunker/Gusssand	Statische Leckage/er- höhter Verschleiß bis verkürzte Lebensdauer durch Gusssand	Gussqualität nicht aus- reichend/ungenügende Reinigung	Poren und Lunker maximal ein Drittel der Haftteilbreite/Reinigung verbessern
Druckgussgehäuse (Al, Mg)	Haftsitz nicht ausrei- chend/Schiefstellung/Zu- rückfedern bzw. Heraus- wandern des Simmerrings (bei Außengummierung)	Unsichere Montage/ver- kürzte Lebensdauer	Zu feine Rauhigkeit der Gehäusebohrung/un- geeignete Haftteilaus- führung	$R_z\!>\!10~\mu\text{m}$ und $<25~\mu\text{m}/\text{Außengummierung}$ wählen
Druckgussgehäuse (Al, Mg)	Elektrochemische Korro- sion (bei metallischem Haftsitz)	Statische Leckage/Be- schädigung von Metallteil oder Gehäuse	Spannungspotential (Ruhepotential)	Geeignete Werkstoffpaarung/Außengummierung wählen
Druckgussgehäuse (Al, Mg)	Beschädigung der Boh- rung bei metallischem Haftsitz	Statische Leckage/ver- kürzte Lebensdauer/ Bohrung verkratzt (nicht in Ordnung) im Repa- raturfall	Ungeeignete Haftteilaus- führung	Außengummierung wählen
Kunststoffgehäuse	Beschädigung der Boh- rung bei metallischem Haftsitz/Einfluss von ther- mischer Expansion oder zu glatter Oberfläche	Statische Leckage/ver- kürzte Lebensdauer	Ungeeignete Werkstoff- paarung oder Haftteilaus- führung	Außengummierung wählen
Einführfase im Gehäuse in Kombination mit einer Außengummierung am Simmerring	Abscheren von Gummi bei Außengummierung/ Schiefstellung/Zurückfe- dern des Simmerrings	Statische Leckage	Gratbildung am Übergang von der Fase zur Bohrung/Fase zu groß bzw. zu klein/Simmerring ist unrund	Graffreiheit gewähr- leisten/Empfehlung der DIN 3761 bezüglich der Anfasung beachten
Gehäusebohrung	Abscheren von Gum- mi/Simmerring nicht montierbar	Statische Leckage	Fase zu groß	Fase = 15–20° wählen

Fehlerquelle	Möglicher Fehler	Folgen auf die Dichtfunktion	Ursache der Schwachstelle	Abstellmaßnahme
Handling von Agg	regaten mit bereits	eingebauter Dichtu	ng in der Produktio	nslinie
Dichtstelle liegt offen bzw. ungeschützt	Verschmutzung/Ver- härtung des Elastomer- werkstoffs	Verkürzte Lebensdauer bis Sofortleckage	Schmutz und Staub in der Umgebung UV-Licht/ Ozon	Geeignete Abdeckung der Dichtstelle zum Schutz gegen Beschädigung und zur Vermeidung negativer Umwelteinflüsse wie Ozon oder UV-Licht/ geeignetes Dichtsystem wählen, welches sich selbst schützt/vorsichtige Montage/ausführliche Anweisungen
Dichtstelle liegt offen bzw. ungeschützt	Beschädigung	Verkürzte Lebensdauer bis Sofortleckage	Mechanische Einwir- kung von Werkstücken, Gegenständen oder Arbeitsabläufen auf die Dichtstelle/ungenügende Transportsicherung von losen Teilen	Geeignete Abdeckung der Dichtstelle zum Schutz gegen Beschädigung und zur Vermeidung negativer Umwelteinflüsse wie Ozon oder UV-Licht/ Geeignetes Dichtsystem wählen, welches sich selbst schützt/vorsichtige Montage/ausführliche Anweisungen
Korrosion von Welle oder Gehäuse	Korrosion an der Dichtlip- penlaufstelle	Verkürzte Lebensdauer	Hohe Luftfeuchtigkeit/ ungenügender Korrosi- onsschutz	Korrosionsschutz/Abdek- kung der Dichtstelle/Luft- feuchtigkeit begrenzen
Transport	Abspringen der Feder	Verkürzte Lebensdauer	Ungeeignete Transport- behälter	Geeignete Transportbe- hälter/Federsitzkontrolle vor der Montage durch- führen
Montage	Beschädigung der Dichtlippe	Verkürzte Lebensdauer bis sofortige Leckage	Keilnutverzahnung	Montagehülse verwenden

Produktverzeichnis

Vorauswahl Simmerringe _	76
--------------------------	----

Simmerringe	
Simmerring B1/SL nach DIN 3761 B/BS	89
Simmerring B1OF	
Simmerring B2/SL nach DIN 3761 C/CS	
Simmerring B2PT	
Simmerring BA/SL nach DIN 3760 A/AS	
Simmerring BABSL (Classical Pressure Seal)	_ ′′
nach DIN 3760 AS	100
Simmerring BADUO	
Simmerring BAHD	
Simmerring BAOF	
Simmerring BAUM/SL nach DIN 3760 A/AS	
Simmerring Radiamatic® EWDR aus PTFE	
Simmerring Energy Saving Seal (ESS)	
Simmerring High Low Pressure Seal (HLPS)	
Simmerring Radiamatic® HTS II aus PTFE	
Simmerring Premium Pressure Seal (PPS) Simmerring Poly Tech Seal (PTS)	
Simmerring Radiamatic® R 35	
Simmerring Radiamatic® R 36	
Simmerring Radiamatic® R 37	
Simmerring Radiamatic® R 58	
Simmerring Radiamatic® R 35 LD	
Simmerring Radiamatic® RS 85	
Simmerring Radiamatic® RHS 51	_ 131

Modul	lare Rac	liallwel	llendich	itungen
IVIOUU	iai e nac	Hallyve	ileriulu	ituriyeri

Simmerring Modular Sealing Component	
(MSC 01, MSC 02)	134
Simmerring Modular Sealing Solution 1 (MSS 1) _	136
Simmerring Modular Sealing Solution 1+	
(MSS 1+ Condition Monitoring)	138
Simmerring Modular Sealing Solution 7 (MSS 7)	139

Kassettendichtungen	
Simmerring Cassette Seal Typ 1	140
Simmerring Cassette Seal Typ 2	
Simmerring Cassette Seal Typ 3	
Simmerring Cassette Seal HS (high speed)	
Cilimetring Cassene ocal tio (night speed)	_ 140
Kombidichtungen	
c: . c l:c l	1.40
Simmerring Combi Seal	
Simmerring Combi Seal SF5	
Simmerring Combi Seal SF6	
Simmerring Combi Seal SF8	
Simmerring Combi Seal SF19	_ 136
Deckeldichtungen	
Verschlussdeckel GA, GSA	150
Verschlussdecker GA, GSA	_ 136
Wasserabweiser	
Simmerring Wasserabweiser WA Typ A	160
Simmerring Wasserabweiser WA Typ AX	
Januaring Wasserabweiser WA 19PAA	_ 101
Profile für rotatorische Anwendung	

_ 162

Vorauswahl Simmerringe

	DIN	Α	AS	Α	AS	A	.S	В	BS
Bauform		BA+	BASL+	BAUM X7⁺	BAUM SLX7+	BABSL NBR	BABSL FKM	B1	B1SL
	Hohe Rauhigkeit des Gehäuses	0	0	0	0	0	0		
gen gen	Hohe Wärmeausdehnung des Gehäuses	0	0	0	0	0	0		
der	Einsatz in geteilten Gehäusen	0	0	0	0	0	0		
Besondere Anforderungen	Dichtheit gegen Druck Sehr fester Halt des Simmerrings	0	0	0	0	0	0	•	•
4	Hohe Steifigkeit des Simmerrings, rauhe Montage								
	M. Inl. 4 100 0C	_	_	_	_				
	Mineralöle < +100 °C Synthetische Öle < +80 °C	•	•	0	0	0	0	0	0
	Mineralöle > +100 °C			•	•	O	•	O	O
	Synthetische Öle > +80 °C			•	•		•		
ŭ _	Fette	•	•	•	•	0	0	0	0
ien	Aggresive Medien								
Abzudichtende Medien und Einsatzbedingungen	Umfangsgeschwindigkeit < ca. 10 m/s (→ Diagramm 1, Seite 80)	•	•	0	0	0	0	0	0
Abzudich Einsa	Umfangsgeschwindigkeit > ca. 10 m/s (→ Diagramm 1, Seite 80)			•	•				
	Druckbelastbar in MPa (→ Bauforminformation)	0,02 0,05	0,02 0,05	0,05	0,05	→ Diagr. 2 S. 80	→ Diagr. 2 S. 80	0,02 0,05	0,02 0,05
	Hochdruckbelastbar			Son	derkonstrukti	on bitte anfro	agen		
	Normaler Schmutzanfall außen								
Schmutz- anfall	Mäßiger bis mittlerer Schmutzanfall außen		•		•	•	•		•
Schr	Hoher Schmutzanfall außen								
	Fremdpartikel innen								
0 •	= Einsatz möglich = vorzugsweiser Einsatz = bevorzugte Raureibe			SL X7	= rillierte	lippe (v = mo r Außenman			

bevorzugte Baureihe

В1 = einteiliges Metallgehäuse

= druckbelastbar BAB

= im Werkzeug erzeugte Dichtlippe

= stirnseitig bearbeitete Dichtlippe (überwiegend für FKM) UM U ... X2 = stirnseitig bearbeitete Dichtlippe (überwiegend für NBR)

	DIN	С	CS						
	Bauform		B2SL	B2PT	BAOF	B10F	BADUO	ВАНБ	ESS
					7				
	Hohe Rauhigkeit des Gehäuses				0		0	0	0
Besondere Anforderungen	Hohe Wärmeausdehnung des Gehäuses				0		0	0	0
nde erur	Einsatz in geteilten Gehäusen				0		0	0	0
Besondere nforderunge	Dichtheit gegen Druck				0		0	•	
Be	Sehr fester Halt des Simmerrings	•	•	•		•	0	0	0
4	Hohe Steifigkeit des Simmerrings, rauhe Montage	•	•	0					
	Mineralöle < +100 °C	0	0	0	0	0	0	•	0
	Synthetische Öle < +80 °C	0	0	0	0	0	0	•	0
	Mineralöle > +100 °C Synthetische Öle > +80 °C						•	0	•
pu	Synthetische Ole > +80 °C			0			0	0	0
en L	Aggresive Medien						O	O	O
edie	Agglesive Mediell								
Abzudichtende Medien und Einsatzbedingungen	Umfangsgeschwindigkeit < ca. 10 m/s (→ Diagramm 1, Seite 80)	0	0	0	6 m/s	6 m/s	5 m/s	2 m/s	0
Abzudich Einsa	Umfangsgeschwindigkeit > ca. 10 m/s (→ Diagramm 1, Seite 80)			0					•
	Druckbelastbar in MPa (→ Bauforminformation)	0,02 0,05	0,02 0,05	1	0,02 0,05	0,02 0,05	0,02	15	0,02
	Hochdruckbelastbar		E	Bitte anfrage	n			•	
	Normaler Schmutzanfall außen						0		0
Schmutz- anfall	Mäßiger bis mittlerer		•		0	0	0		•
chmutz	Schmutzanfall außen Hoher Schmutzanfall außen								
S							•		
	Fremdpartikel innen								

○ = Einsatz möglich

• = vorzugsweiser Einsatz

B2 = Metallgehäuse ohne Versteifungsblech

OF = ohne Feder

PT = Dichtlippe aus PTFE

	DIN									
Bauform		HLPS	Sdd	PTS	MSS 1	MSS 1+	MSS 7	MSC 01	MSC 02	GA, GSA
				Ţ						
	Hohe Rauhigkeit des Gehäuses	0	0	0	0	0	0			0
Besondere Anforderungen	Hohe Wärmeausdehnung des Gehäuses	0	0	0	0	0	0			0
ag E	Einsatz in geteilten Gehäusen	0	0	0	0	0	0			0
Besondere nforderunge	Dichtheit gegen Druck	•	•	0	0	0	0			0
Be	Sehr fester Halt des Simmerrings	0	0	•		0	0			0
₹	Hohe Steifigkeit des Simmerrings, rauhe Montage									
	Mineralöle < +100 °C	•	•	0	•	0	0			0
	Synthetische Öle < +80 °C	•	•	0	•	0	0			0
	Mineralöle > +100 °C	0	0	•	•					
ਰ	Synthetische Öle > +80 °C	0	0	•	•					
ے قا	Fette	0	0			0	0	0	•	0
ien	Aggresive Medien			0						
ledi										
Abzudichtende Medien und Einsatzbedingungen	Umfangsgeschwindigkeit < ca. 10 m/s (→ Diagramm 1, Seite 80)	2 m/s	•	0	6 m/s	0	0	 6 m/s		
Abzudicł Einsa	Umfangsgeschwindigkeit > ca. 10 m/s (→ Diagramm 1, Seite 80)		0	•						
	Druckbelastbar in MPa (→ Bauforminformation)	22	1,5	1,0	0,05	0,05	0,05			
	Hochdruckbelastbar	•								
	Normaler Schmutzanfall außen		0	0						
Schmutz- anfall	Mäßiger bis mittlerer Schmutzanfall außen		•	•		0	0	•	•	
Sch	Hoher Schmutzanfall außen Fremdpartikel innen				•	•	•	0	0	

^{○ =} Einsatz möglich

⁼ vorzugsweiser Einsatz

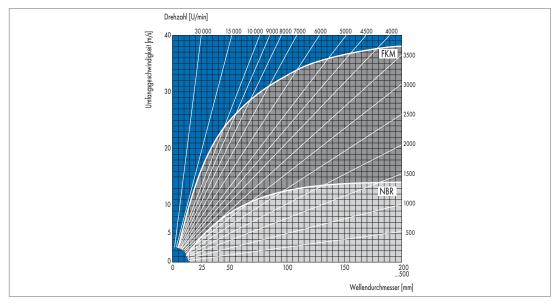
	DIN									
	Bauform	Cassette Seal Typ 1	Cassette Seal Typ 2	Cassette Seal Typ 3	Cassette Seal HS	Combi Seal	Combi Seal SF5	Combi Seal SF6	Combi Seal SF8	Combi Seal SF19
		S		S	N		1	5	M	
	Hohe Rauhigkeit des Gehäuses	0	0	0	0				0	0
Besondere Anforderungen	Hohe Wärmeausdehnung des Gehäuses	0	0	0	0					
ode Frui	Einsatz in geteilten Gehäusen	0	0	0	0					
Besondere iforderunge	Dichtheit gegen Druck*	0	0	0		0	0	0	0	0
nfc Infc	Sehr fester Halt des Simmerrings	0	0	0	0	•	•	•	•	•
	Hohe Steifigkeit des Simmerrings, rauhe Montage	0	0	0						
	Mineralöle < +100 °C	•	•	•	•	•	•	•	•	•
	Synthetische Öle < +80 °C	•	•	•	•	•	•	•	•	•
	Mineralöle > +100 °C	0	0	0	•					
ъ	Synthetische Öle > +80 °C	0	0	0	•	0	0	0	0	0
5 -	Fette	•	•	•	0	•	•	•	•	•
lien nge	Aggresive Medien**									
/led					Spezi	elle Beding	ungen			
Abzudichtende Medien und Einsatzbedingungen	Umfangsgeschwindigkeit < ca. 10 m/s*** (→ Diagramm 1, Seite 80)	9 m/s	7 m/s	6 m/s	0	5 m/s	0	0	0	0
bzudid	Umfangsgeschwindigkeit > ca. 10 m/s***				12 m/s		10 m/s	10 m/s	10 m/s	10 m/s
⋖	(→ Diagramm 1, Seite 80)									
	Druckbelastbar in MPa (→ Bauforminformation)	0,05	0,05	0,05	0,05	0,02	0,02	0,02	0,02	0,02
	Hochdruckbelastbar									
	Normaler Schmutzanfall außen ¹⁾	•	0	0	•	•	•			0
Schmutz- anfall	Mäßiger bis mittlerer Schmutzanfall außen ¹⁾		•	0	0	0	0	•	•	0
Sch	Hoher Schmutzanfall außen ¹⁾			•					0	•
	Fremdpartikel innen									

⁼ Einsatz möglich

^{* =} Spezielles Design auf Anfrage (LC kontaktieren)

⁼ vorzugsweiser Einsatz

^{* =} Spezifische Mischung notwendig


^{*** =} Abhängig von der Mischung

Im Vergleich zu normalen Simmerringen (→ S. 76/77) ist die Definition "normaler Schmutzanfall", "mäßiger/mittlerer Schmutzanfall" und "hoher Schmutzanfall" für Simmerringe Cassette Seal und Combi Seal höher zu bewerten, da sie speziell für extrem verschmutze Anwendungen entwickelt wurden.

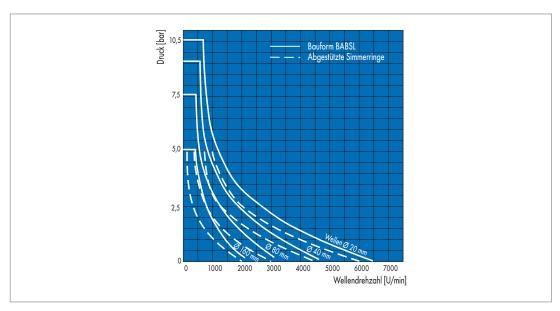

simrit

Diagramm 1

Zulässige Umfangsgeschwindigkeit für Simmerringe aus den Werkstoffen NBR (72 NBR 902) und FKM (75 FKM 585) bei der Abdichtung von Motorenöl SAE 20. Einsatz Simmerring mit SL (Schutzlippe): v = max. 8 m/s.

Diagramm 2

Zulässiger Druck im Aggregat für Simmerringe (Bauform BABSL), sowie für abgestützte Simmerringe

Bauformen für besondere Anforderungen

In Fällen höherer und spezieller Belastungen sollte die Dichtung in Zusammenarbeit mit uns festgelegt werden, wobei Versuche zur Überprüfung der Funktionssicherheit häufig unerlässlich sind. Für diese spezifischen Einsatzbedingungen und Anwendungen steht ein breites Spektrum nicht katalogmäßig geführter spezieller Bauformen auf Anfrage zur Verfügung.

Bauform	Besonderheit	besondere Eigenschaften	Einsatzbeispiele					
	Besondere Haf	tteilausführung						
BD	Haftteilausführung: teils Metall, teils Elastomer	fester und dichter Sitz im Gehäuse	Serienausführung mit breitem Anwendungsspektrum					
Radiamatic RS 85	Haftteil: NBR 90 Sh A Metallteil: Stahlbandeinlage	fester Sitz im Gehäuse für große Abmessungen	Walzwerke, Zementmühlen					
Besondere Gestaltung der Dichtlippe								
BDRK/BDLK	Einzeldrall: Linksdrall LK Rechtsdrall RK Wechseldrall: Linksdrall LK Rechtsdrall RK	hohe Dichteigenschaften bei hohen Umfangsgeschwin- digkeiten und Temperaturen. Einfachdrall: für eine Drehrichtung der Welle Wechseldrall: für beide Drehrichtungen der Welle	Motoren, Getriebe, Achsantriebe					
BAPTSLV	Dichtlippe aus PTFE mit Drall Schutzlippe aus Vlies	hohe Dichteigenschaften bei sehr hohen Umfangsge- schwindigkeiten, Temperaturen und hochbelastbaren Ölen	Motoren, Kurbelwellendichtung					

Bauform	Besonderheit	besondere Eigenschaften	Einsatzbeispiele
AT, AT SL	PTFE-beschichtete Dichtlippe: Beschichtung auf der Luftseite der Dichtlippe	für Einsatz bei Mangel- schmierung und hohen Umfangsgeschwindigkeiten	Industrieantriebe
BAE SL X6	besondere Gestaltung der Dichtlippe; zwei Schutzlippen gegen Waschlauge; zusätzliche statische Schutzlippen	Einsatz für die Trennung von Wasser/Waschlauge und fettgeschmierten Lagern	Waschmaschinen
	Besondere Gestalt	ung der Dichtlippe	
Radiamatic RHS 51	Haftteile: 90 FKM Dichtlippe: 80 FKM Metallteil: Stahlbandeinlage	Spezialkonstruktion der Dichtlippe; zwei ineinander angeordnete Federn aus Nirostahl zur gleichmäßigen Verteilung der Radialkraft am Umfang; für hohe Umfangsgeschwindigkeiten und Exzentrizitäten	schnell laufende Walzenstrassen
Sonderform	Werkstoff: 75 FKM 595	spezielle Gestaltung der gesamten Konstruktion; für die Integration in große Wälzlager	Papierindustrie, Walzwerke, Großgetriebe
PTS	Dichtlippe: neu entwickeltes PTFE Haftteil: FKM Metallteil: DIN EN 10088	im Vergleich zu anderen PTFE- Ringen sehr hohe Dichtheit; Dichtlippe z.T. mit Spiraldrall fester und dichter Sitz im Gehäuse	Einsatz in Sonderflüssigkeiten, bei Mangelschmierung und Trockenlauf; in 2-Taktmotoren, Kompressoren, in der Lebensmittelindustrie, in der Chemieindustrie

Bauform	Besonderheit	besondere Eigenschaften	Einsatzbeispiele	
ESS (Energy Saving Seal)	federlose, profilierte Dichtlippe	Dichtlippe mit Rückförderdrall; sehr geringe Reibung	Motoren, Getriebe	
	Bauformen für besond	lere Druckbelastungen		
PPS (Premium Pressure Seal)	Optimierung des Profils der druckbelastbaren Dichtlippe	Druckbelastung wie für Bauform BAB SL; hohe Zuverlässigkeit; lange Einsatzdauer	Hydropumpen, Hydromotoren	
Bauform BAHD SN	Dichttextur auf der Luttseite der Dichtlippe; kurze, sehr stabile Dichtlippe	Einsatz bei hohen Drücken oder Druckpulsationen und geringen Geschwindigkeiten Werkstoffhärte: 90 Sh A	Hochdruckpumpen mit niedriger Drehzahl	
Baaroriii Barrib ore	Bauformen für besond	lere Druckbelastungen		
ATD, ATD SL	kurze stabile Dichtlippe; PTFE-Beschichtung auf der Luftseite der Dichtlippe	druckbelastbar; geringe Reibung; Einsatz auch bei Mangelschmierung	Hydropumpen	
Bauform HLPS (High Low Pressure Seal)	federlose Lippe; integrierter Stützring	hohe Zuverlässigkeit, speziell bei sehr hohen Drücken	hochbelastete Hydropumpen	

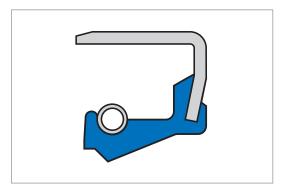
Bauform	Besonderheit	besondere Eigenschaften	Einsatzbeispiele
	Cassette Seals für besc	ondere Anforderungen	
Bearing Unit Cassette Seal	Sonderbauform Cassette; Werkstoff FKM; Laufring in Nirostahl	in Wälzlger integrierte Bauform für hohen Schmutzanfall	fettgeschmierte Radnaben
Soft Unitized Cassette Seal	Sonderbauform Cassette mit doppelter axialer Schmutzlippe; Werkstoff FKM oder NBR	Bauform für hohen Schmutz- anfall; der Laufring kann während der Montage separat vom RWDR montiert werden	Radnaben und Ritzel in Achsen für Land und Baumaschinen und NKW
Cassette Seal PTFE	Sonderbauform Cassette mit PTFE-Dichtlippe mit Drall; Schutzlippe aus FKM oder Vlies	Hoher Schutz gegen Staub- oder Schmutzeintritt	Kurbelwellendichtung in Diesel Motoren
Cassette Seal Casco	Sonderbauform Cassette mit axialer Dichtlippe und doppeltem Drall; Werkstoff FKM; Schutzlippe in FKM oder in Vlies	entwickelt für lange Lebens- dauer; sehr geringe Reibung und sehr gute Resistenz bei hochbelastbaren Ölen; sicheres Handling und einfache Montage	Kurbelwellendichtung in Dieselmotoren
	Bauformen gegen S	Schmutz von außen	
BDSVV	Schutzlippe aus Vlies SLV	Vlies verhindert Zutritt von Schmutz unter die Dichtlippe, ist aber luftdurchlässig; verhindert Bildung von Unter- druck hinter der Dichtlippe bei Drallringen	Motoren

Bauform	Besonderheit	besondere Eigenschaften	Einsatzbeispiele
BA SL X6	zwei Schutzlippen	gegen mittleren Schmutzanfall Hinweis: möglichst Fettfüllung zwischen den Dichtlippen bis ca. 40 %	Getriebe Achsen: Ritzeldichtung
BA SL SF	mit axialer Schutzlippe	gegen mittleren Schmutzanfall; axiale Schuzlppe in Verbindung mit einem Schleuderblech (Labyrinth)	Getriebe Achsen: Ritzeldichtung
Kombination aus BA SL und MSC	Kombination aus BA SL und MSC	gegen hohen Schmutzanfall; MSC läuft mit der Welle um Hinweis: auf elastomerfreie Fläche am Rücken des BA SL im Bereich des Kontakts der MSC-Lippe achten	Abtriebe in Getrieben
Combi SF	Combi Seal mit zusätzlichem Schmutzabweiser aus hydrolyse- festem Polyurethan	Einsatz bei sehr hohem Schmutz- und Schlammanfall; Einsatz bei zusätzlicher axialer Bewegung der Welle möglich	Achsen insbesondere Gelenkwellen in angetriebenen, lenkbaren Achsen
Cassette Seal Typ 3	Cassette Seal mit Labyrinthstruktur Spezifische Bearbeitung der Laufringoberfläche auf der die Dichtlippe arbeitet Verschiedene Materialkombina- tionen in Viton oder NBR möglich	Einsatz bei extremen Schmutz- anfall und bei allgemeinen verschmutzten Anwendungen Sichere Montage und Hand- ling aufgrund der integrierten Lauffläche	Radnaben für Land- und Baumaschinen Kreiseleggen Scheibeneggen verschiedene Aggregate

Bauform	Besonderheit	besondere Eigenschaften	Einsatzbeispiele
Besondere Bauformen gegen verschmutzte, abzudichtende Medien			
MSS 2 (Modular Sealing Solution)	innere Dichtung aus Vlies	Vliesdichtscheibe vermeidet Kontakt der Dichtkante mit Partikeln im verschmutzten Medium	Abtriebe in Industriegetrieben
(Moderal Sealing Solution)	Resendere Bauformen zu	Trennung zweier Medien	
Besondere Bauformen zur Trennung zweier Medien			
BA DUO	zwei Dichtlippen	zur Trennung zweier Medien; schmal bauende Lösung; auch bei mittlerem Schutzanfall von außen einsetzbar	Umfangsgeschwindigkeit <5 m/sec Fettfüllung zwischen den Dichtlippen max.40%
zwei Standard-Bauformen z.B. BAU X2, BAUM	zwei Standard-Bauformen z.B. BAU X2, BAUM mit dem Rücken gegeneinander eingebaut	zur Trennung zweier Medien; schmal bauende Lösung; auch bei mittlerem Schmutz- anfall von außen einsetzbar	Hinweis: wenn möglich, Zwischenring mit Bohrungen zwischen den Dichtungen zur Drainage
Bauformen mit zusätzlichen Funktionen			
MSS 1 + CM	(Condition Monitoring)	Integrierte Leckageerkennung durch saugendes Vlies und optischen Sensor; Einsatz in schlecht zugänglichen Dichtstellen, bei denen frühzeitige Erkennung der Leckage notwendig ist	Getriebe in Rolltreppen, Windkraftanlagen
im Wälzlager integrierte Dichtung mit Signalgeber	im Wälzlager integrierte Dichtung mit Signalgeber	magnetisiete Elastomerauflage zur Drehzahlerfassung	Radnaben zur Drehzahlerfassung
IWDS	(integrierter Wellendichtring mit Sensor)	in Abtriebsflansch integrierte Dichtung, kombiniert mit mgnetisiertem Encoderteil zur Erfassung der Drehzahl und des Drehwinkels	Motoren

Anwendung in der allgemeinen Industrie

Anwendungsbereich	Industriemotoren	Antriebsstrang Land	- und Baumaschinen	Industriegetriebe
Abdichtstelle	Kurbelwelle Nockenwelle	Getriebe Eingang Ausgang Schaltwelle	Achsen Ritzel Radnabe Gelenkwelle	Getriebemotoren Stirnradgetriebe Schneckenradgetriebe
Standardbauformen	Kleinmotoren; 2-Takt-Motoren: in NBR und FKM	Schaltwelle: NBR Eingang: FKM BAUM (SL)	Cassette Seal Combi Seal	BAUM X7 MSS 1
Sonderbauformen auf Anfrage	BDSVV PTFE/Vlies	Eingang/Ausgang BD	Ritzel Cassette HS	Antrieb MSS 2
	Dichtlippe mit Drall ESS (Energy Saving Seal)	BA SL X6	Axiale Schutzlippe BA SL	BAUSLX2 + MSC
	Cassette Seal PTFE	Axiale Schutzlippe BA SL SF		MSS 1 + CM
	Cassette Seal Casco			



Anwendungsbereich	Hydroaggregate	Waschmaschinen	Schwer- maschinenbau	Allg. Maschinen- und Apparatebau
Abdichtstelle	Pumpen Getriebe	Haushaltsmaschinen Industriemaschinen	Stahl- und Walzwerke Schiffswellen Zementmühlen etc.	
Standardbauformen	BABSL in NBR und FKM	teilweise in NBR	NBR/FKM	NBR/FKM Chemie: PTFE
Sonderbauformen auf Anfrage	PTS BAHD ATD spezielle Werkstoffe HLPS	BAESLSFX 6 spezielles NBR	Schiffswellen Walzwerke Großlager Sonderbauform Radiamatic RHS 51	BDPT Trennung zweier Medien BA DUO Zwei BAUX 2

Simmerring B1.../SL nach DIN 3761 B/BS

Simmerring B1FUD, B1FUDSL, B1U, B1USL, B1, B1SL

Simmerring B1FUD

Simmerring B1FUDSL

Produktbeschreibung

- Außenmantel: metallisch, bearbeitet
- Federbelastete Dichtlippe
- Zusätzliche Schutzlippe (B1...SL)
- Dichtlippenprofil, stirnseitig bearbeitete Dichtlippe
- Dichtlippenprofil, fertige Dichtlippe (B1FUD/B1FUDSL).

Produktvorteile

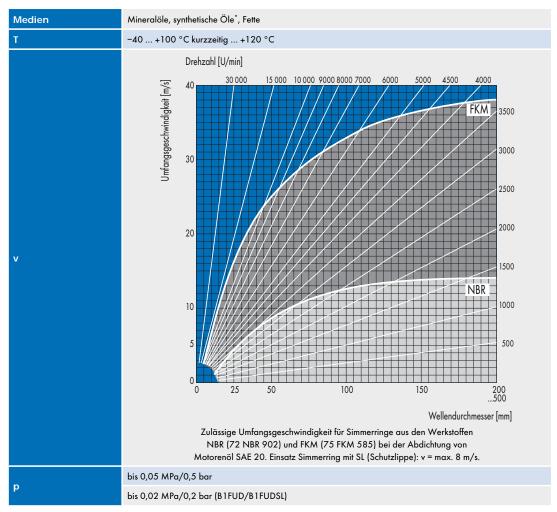
- Breites Anwendungsspektrum in allen Industriebereichen
- Metallgehäuse für besonders festen und exakten Sitz in der Bohrung (Hinweis: statische Abdichtung am Außenmantel bei dünnflüssigen und gasförmigen Medien eingeschränkt)
- Zusätzliche Schutzlippe gegen mäßigen bis mittleren Staub- und Schmutzanfall von außen (B1FUDSL).
 (Hinweis: kann zu Temperaturerhöhung durch Reibungswärme führen).

Anwendung

- Industriegetriebe
- Achsen (bei moderater Schmutzbeaufschlagung)
- Elektrowerkzeuge.

Werkstoff

Acryl-Nitril-Butadien-Kautschuk (NBR)


Bezeichnung	72 NBR 902
Farbe	blau
Härte	72 Shore A
Metallgehäuse	unlegierter Stahl DIN EN 10027-1
Feder	Federstahl DIN EN 10270-1

75 FKM 585 und 75 FKM 595 auf Anfrage.

Einsatzbereich

^{*} Bei synthetischen Ölen (Polyalkylenglykolen/Polyalphaolefinen) ist zu beachten, dass die maximale Einsatztemperatur 80 °C nicht übersteigen darf.

Einbau & Montage

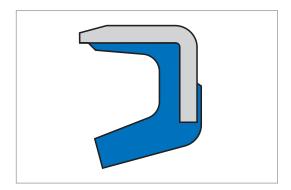
Welle

Toleranz	ISO h 11
Rundheit	IT 8
	$R_a = 0.2 0.8 \mu m$
Rauheit	R _z = 1,0 5,0 μm
	$R_{max} = <6.3 \mu m$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

Gehäusebohrung

Toleranz	ISO H8
Rauheit, metallischer Haftstitz	R _z = 6,3 16 μm

Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760.


Abmessungsbereich für Wellen-Ø d_1

Simmerring B1	5 500 mm
Simmerring B1SL	12 290 mm

simrit

Simmerring B10F

Simmerring B1OF

Produktbeschreibung

- Außenmantel: Metallgehäuse
- Dichtlippe ohne Feder.

Produktvorteile

- Einfaches Dichtelement für untergeordnete Einsatzfälle
- Als Abdichtung gegen Fett
- Als zusätzliche Abdichtung gegen mäßigen bis mittleren Staub- und Schmutzanfall.

Anwendung

- Elektrowerkzeuge
- Abdichtung von Schwenklager
- Abdichtung von Stellgliedern.

Werkstoff

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	72 NBR 902
Farbe	blau
Härte	72 Shore A
Versteifungsblech	unlegierter Stahl DIN 1624

Einsatzbereich

Medien	Fette
Т	−40 +100 °C
v	bis 6 m/s
p	-

Zulässige Maximalwerte in Abhängigkeit der übrigen Betriebsbedingungen.

Einbau & Montage

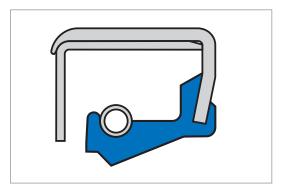
Welle

Toleranz	ISO h 11
Rundheit	IT 8
	R _a = 0,2 0,8 μm
Rauheit	R _z = 1,0 5,0 μm
	$R_{\text{max}} = <6.3 \ \mu \text{m}$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

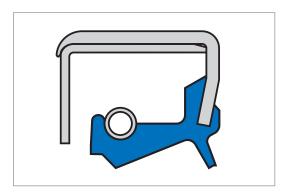
Gehäusebohrung

Toleranz	ISO H8
Rauheit	R _z = 6,3 16 μm

Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760.


Abmessungsbereich für Wellen-Ø D₁

Simmerring B1OF	8 65 mm
-----------------	---------



Simmerring B2.../SL nach DIN 3761 C/CS

Simmerring B2FUD, B2FUDSL, B2U, B2USL, B2, B2SL

Simmerring B2FUD

Simmerring B2FUDSL

Produktbeschreibung

- Außenmantel: metallisch, bearbeitet
- Versteifungsblech
- Federbelastete Dichtlippe
- Zusätzliche Schutzlippe (B2...SL)
- Dichtlippenprofil, stirnseitig bearbeitete Dichtlippe
- Dichtlippenprofil, fertige Dichtlippe (B2FUD/B2FUDSL).

Produktvorteile

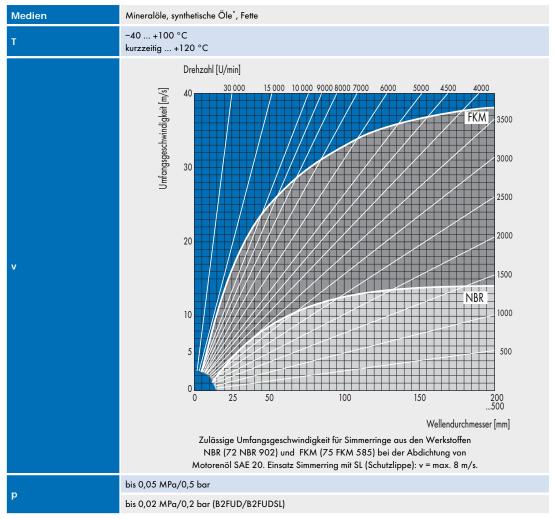
- Breites Anwendungsspektrum in allen Industriebereichen
- Für größere Abmessungen und bei rauher Montage in die Aufnahmebohrung (Hinweis: statische Abdichtung am Außenmantel bei dünnflüssigen und gasförmigen Medien eingeschränkt)
- Zusätzliche Schutzlippe gegen mäßigen bis mittleren Staub- und Schmutzanfall (B2...SL)
 (Hinweis: kann zu Temperaturerhöhung durch Reibungswärme führen).

Anwendung

Schwerindustrie (Kräne, Kalandergetriebe).

Werkstoff

Acryl-Nitril-Butadien-Kautschuk (NBR)


Bezeichnung	72 NBR 902
Farbe	blau
Härte	72 Shore A
Metallgehäuse	unlegierter Stahl DIN 1624
Versteifungsblech	unlegierter Stahl DIN 1624
Feder	Federstahl DIN 17223

75 FKM 585 und 75 FKM 595 auf Anfrage.

Einsatzbereich

^{*} Bei synthetischen Ölen (Polyalkylenglykolen/Polyalphaolefinen) ist zu beachten, dass die maximale Einsatztemperatur 80 °C nicht übersteigen darf

Einbau & Montage

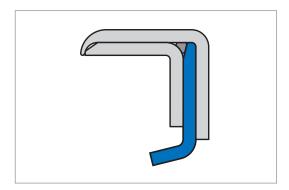
Welle

Toleranz	ISO h 11
Rundheit	IT 8
Rauheit	R _α = 0,2 0,8 μm
	$R_z = 1.0 5.0 \mu m$
	$R_{\text{max}} = <6.3 \ \mu \text{m}$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

Gehäusebohrung

Toleranz	ISO H8
Rauheit, metallischer Haftstitz	R _z = 6,3 16 μm

Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760.


Abmessungsbereich für Wellen-Ø d₁

Simmerring B2	10 710 mm
Simmerring B2SL	25 185 mm

simrit*

Simmerring B2PT

Simmerring B2PT

Produktbeschreibung

- Außenmantel: Metallgehäuse
- Dichtlippe aus PTFE.

Produktvorteile

- Besonderes Anwendungsspektrum im allgemeinen Maschinenbau und in der chemischen Industrie
- Thermisch hochbeanspruchbar
- Bei Trockenlauf und Mangelschmierung
- Chemisch hochbeständig
- Bei Forderungen nach stick/slip-freiem Verhalten. (Hinweis: bei begrenzten Anforderungen an das dynamische Dichtverhalten! Statische Abdichtung am Außenmantel bei dünnflüssigen und gasförmigen Medien eingeschränkt).

Anwendung

- Drehdruckdurchführungen
- Zentrifugen
- Pumpen
- Mischer.

Werkstoff

Dichtlippe	PTFE 10/F56101 kohlegefüllt, exakt zentriert und vorgedehnt
Metallgehäuse	nichtrostender Stahl gemäß Werkstoff-Nr. 1.4571
O-Ring	Fluorelastomer

Einsatzbereich

Medien	Mineralöle, synthetische Öle, Fette, Wasser, Säuren, Laugen, Lösungsmittel, Gase
Т	−80 +200 °C
v	bis 30 m/s
р	bis 1 MPa/10 bar

Zulässige Maximalwerte in Abhängigkeit der übrigen Betriebsbedingungen.

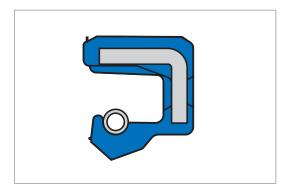
Einbau & Montage

Welle

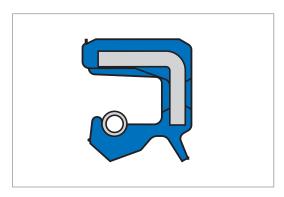
Toleranz	ISO h 11
Rundheit	IT 8
Rauheit	$R_{\alpha} = 0.2 0.4 \mu m$
	R _z = 1,0 5,0 μm
	$R_{\text{max}} = <6.3 \ \mu \text{m}$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

Gehäusebohrung

Toleranz	ISO H8
Rauheit	R _z = 6,3 16 μm


Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760.

Abmessungsbereich für Wellen-Ø d₁



Simmerring BA.../SL nach DIN 3760 A/AS

Simmerring BAUX2, BAUSLX2, BAFUDX7, BAFUDSLX7, BA, BASL, BAU, BAUSL

Simmerring BA...

Simmerring BA...SL

Produktbeschreibung

- Außenmantel: Elastomer (glatt, bzw. rilliert = X7)
- Federbelastete Dichtlippe
- Zusätzliche Schutzlippe (BA...SL)
- Dichtlippenprofil, stirnseitig bearbeitete Dichtlippe (BAUX2, BAUSLX2 = bevorzugte Bauform)
- Dichtlippenprofil, fertige Dichtlippe (BAFUDX7/BAFUDSLX7).

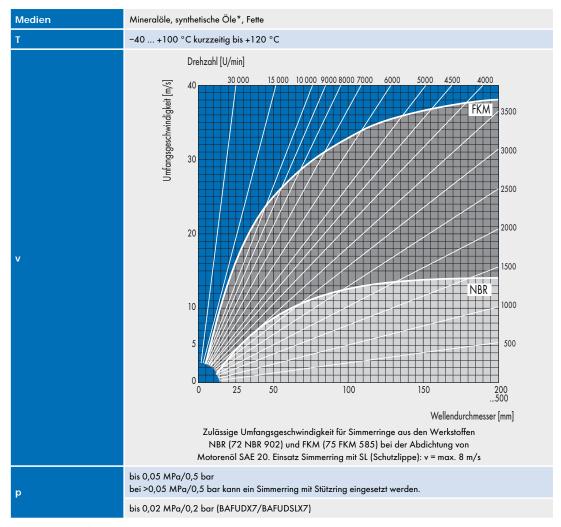
Produktvorteile

- Breites Anwendungsspektrum in allen Industriebereichen
- Sichere Abdichtung zur Gehäusebohrung, auch bei erhöhter Rauheit der Bohrung, Wärmedehnung und geteilten Gehäusen, dadurch Abdichtung dünnflüssiger und gasförmiger Medien möglich
- Zusätzliche Schutzlippe gegen mäßigen und mittleren Staub- und Schmutzanfall von außen (BA...SL)
 (Hinweis: kann zu Temperaturerhöhung durch Reibungswärme führen).

Anwendung

- Industriegetriebe
- Achsen (bei moderater Schmutzbeaufschlagung)
- Elektrowerkzeuge.

Werkstoff


Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	72 NBR 902
Farbe	blau
Härte	72 Shore A
Versteifungsblech	unlegierter Stahl DIN 1624
Feder	Federstahl DIN 17223

Einsatzbereich

^{*} Bei synthetischen Ölen (Polyalkylenglykolen/Polyalphaolefinen) ist zu beachten, dass die maximale Einsatztemperatur 80 °C nicht übersteigen darf.

Einbau & Montage

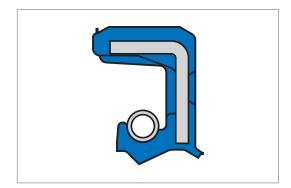
Welle

Toleranz	ISO h 11
Rundheit	IT 8
Rauheit	R _α = 0,2 0,8 μm
	R _z = 1,0 5,0 μm
	$R_{max} = <6.3 \mu m$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

Gehäusebohrung

Toleranz	ISO H8
Rauheit, gummierter Haftstitz	R _z = 10 25 μm

Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760.


Abmessungsbereich für Wellen- \emptyset d₁

Simmerring BA	4 600 mm
Simmerring BASL	8 300 mm

Simmerring BABSL (Classical Pressure Seal) nach DIN 3760 AS

Simmerring BABSL

Produktbeschreibung

- Außenmantel: Elastomer
- Kurze, flexible, federbelastete Dichtlippe
- Zusätzliche Schutzlippe.

Produktvorteile

- Einsatz vorzugsweise in druckbeaufschlagten Aggregaten
- Sichere Abdichtung zur Gehäusebohrung, auch bei erhöhter Rauheit der Bohrung, Wärmedehnung und geteilten Gehäusen
- Vorteile bei Abdichtung von dünnflüssigen und gasförmigen Medien
- Erhöhte thermische Stabilität und chemische Beständigkeit bei Verwendung von 75 FKM 595
- Zusätzliche Schutzlippe gegen m\u00e4\u00dfigen und mittleren Staub- und Schmutzanfall von au\u00dfen
- Geringer axialer Bauraum (Hinweis: kann zu Temperaturerhöhung durch Reibungswärme führen).

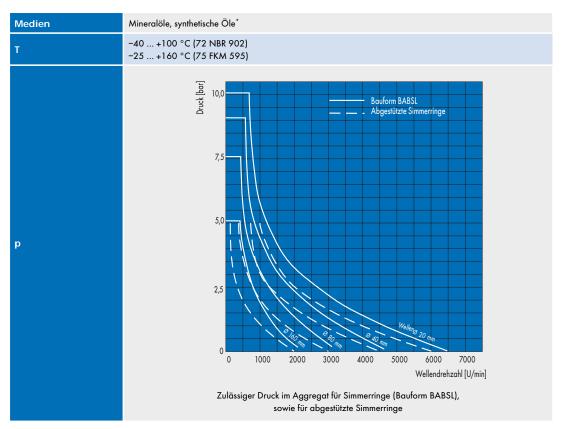
Anwendung

- Hydrostatische Antriebe (Pumpen, Motoren aller Art)
- 2-Takt Motoren.

Werkstoff

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	72 NBR 902
Farbe	blau
Härte	75 Shore A


Fluor-Kautschuk

Bezeichnung	75 FKM 595
Farbe	rotbraun
Härte	75 Shore A

Versteifungsblech	unlegierter Stahl DIN EN 10027-1
Feder	Federstahl DIN EN 10270-1

Einsatzbereich

^{*} Bei synthetischen Ölen (Polyalkylenglykolen/Polyalphaolefinen, ist zu beachten, dass die maximale Einsatztemperatur 80 °C nicht übersteigen darf (nur bei Verwendung von NBR).

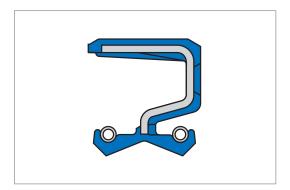
Einbau & Montage

Welle

Toleranz	ISO h 11
Rundheit	IT 8
Rauheit	$R_{\alpha} = 0.2 \dots 0.4 \ \mu m$
	R _z = 1,0 3,0 μm
	$R_{max} = <6.3 \mu m$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

Gehäusebohrung

Toleranz	ISO H8
Rauheit	R _z = 10 25 μm


Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760.

Abmessungsbereich für Wellen-Ø d_1

Simmerring BABSL (NBR)	8 340 mm
Simmerring BABSL (FKM)	8 170 mm

Simmerring BADUO

Simmerring BADUO

Produktbeschreibung

- Außenmantel: Elastomer
- Zwei federbelastete Dichtlippen.

Produktvorteile

- Abdichtung zur Trennung zweier Medien
- Geringer Einbauraum
- Zwei federbelastete Dichtlippen (eine federbelastete Schutzlippe gegen mäßigen und mittleren Schmutzanfall)
- Sichere Abdichtung zur Gehäusebohrung, auch bei erhöhter Rauheit der Bohrung, Wärmedehnung und geteilten Gehäusen.

Anwendung

- Werkzeugmaschinen
- Verteilergetriebe in Land- und Baumaschinengetrieben und Achsen.

Werkstoff

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	72 NBR 902
Härte	72 Shore A
Versteifungsblech	unlegierter Stahl DIN EN 10027-1*
Feder	Federstahl DIN EN 10270-1*

^{*} Einzelne Abmessungen sind mit zwei Versteifungsblechen oder einem Versteifungsblech in angepasster Form versehen.

75 FKM 585 und 75 FKM 595 auf Anfrage.

Einsatzbereich

Medien	Mineralöle, synthetische Öle*, Fette
т	-40 +100 °C kurzzeitig bis +120 °C
v	bis 5 m/s
р	bis 0,05 MPa/0,5 bar

^{*} Bei synthetischen Ölen (Polyalkylenglykolen/Polyalphaolefinen, Synthetische Schmierstoffe) ist zu beachten, dass die maximale Einsatztemperatur 80 °C nicht übersteigen darf.

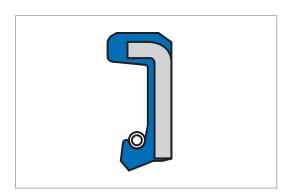
Einbau & Montage

Welle

Toleranz	ISO h 11
Rundheit	IT 8
Rauheit	R _α = 0,2 0,8 μm
	R _z = 1,0 5,0 μm
	$R_{\text{max}} = <6.3 \ \mu \text{m}$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

Gehäusebohrung

Toleranz	ISO H8
Rauheit	R _z = 10 25 μm


Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760.

Abmessungsbereich für Wellen-Ø d₁

Simmerring BADUO	25 150 mm
------------------	-----------

Simmerring BAHD

Simmerring BAHD

Produktbeschreibung

Hochdruckdichtung.

Bauform BA mit kurzer sehr stabiler Dichtlippe gegen hohe Drücke, Schmiernuten auf der Luftseite der Dichtlippe.

Produktvorteile

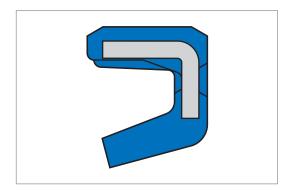
- Einsatz gegen hohe Drücke
- Extrem stabile Dichtlippe
- Geringer Verschleiß
- Lange Lebensdauer.

Anwendung

Alle hydrostatischen Antriebe mit niedrigen Drehzahlen.

Werkstoff

Bezeichnung	90 NBR 129208 88 FKM 107725
-------------	--------------------------------


Einsatzbereich

т	−40 +100 °C (NBR) −25 +160 °C (FKM)
V _{U max}	2 m/s
p _{max}	0,15 MPa/150 bar

simrit®

Simmerring BAOF

Simmerring BAOF

Produktbeschreibung

- Außenmantel: Elastomer
- Dichtlippe ohne Feder.

Produktvorteile

- Einfaches Dichtelement für untergeordnete Einsatzfälle
- Als Abdichtung gegen Fett
- Als zusätzliche Abdichtung gegen mäßigen bis mittleren Staub- und Schmutzanfall.

Anwendung

- Elektrowerkzeuge
- Abdichtung von Schwenklager
- Abdichtung von Stellgliedern.

Werkstoff

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	72 NBR 902
Farbe	blau
Härte	72 Shore A
Versteifungsblech	unlegierter Stahl DIN 1624

Einsatzbereich

Medien	Fette
Т	−40 +100 °C
v	bis 6 m/s
р	-

Zulässige Maximalwerte in Abhängigkeit der übrigen Betriebsbedingungen.

Einbau & Montage

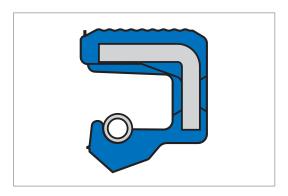
Welle

Toleranz	ISO h 11
Rundheit	IT 8
	$R_{\alpha} = 0.2 \dots 0.8 \ \mu m$
Rauheit	R _z = 1,0 5,0 μm
	$R_{\text{max}} = <6.3 \ \mu \text{m}$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

Gehäusebohrung

Toleranz	ISO H8
Rauheit	R _z = 10 25 μm

Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760.


Abmessungsbereich für Wellen-Ø D₁

Simmerring BAOF 3	3 230 mm
-------------------	----------

Simmerring BAUM.../SL nach DIN 3760 A/AS

Simmerring BAUMX7, BAUMSLX7, BAUM, BAUMSL

Simmerring BAUM...

Simmerring BAUMSL...

Produktbeschreibung

- Außenmantel: Elastomer (glatt, rilliert = X7)
- Federbelastete Dichtlippe
- Zusätzliche Schutzlippe (BAUMSL, BAUMSLX7)
- Reibungsoptimiertes Dichtlippenprofil.

Produktvorteile

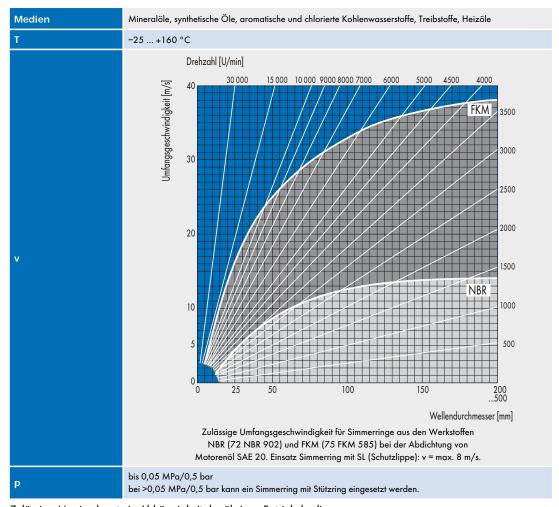
- Breites Anwendungsspektrum in allen Industriebereichen
- Erhöhte thermische Stabilität und chemische Beständigkeit
- Sichere Abdichtung zur Gehäusebohrung, auch bei erhöhter Rauheit der Bohrung, Wärmedehnung und geteilten Gehäusen, dadurch auch eine Abdichtung dünnflüssiger und gasförmiger Medien möglich
- Vorteile bei Abdichtung von dünnflüssigen und gasförmigen Medien
- Zusätzliche Schutzlippe gegen mäßigen und mittleren Staub- und Schmutzanfall von außen (BAUMSLX7)

(Hinweis: kann zu Temperaturerhöhung durch Reibungswärme führen).

Anwendung

- Land- und Baumaschinengetriebe
- Industriegetriebe
- Achsen (bei moderater Schmutzbeaufschlagung)
- Elektrowerkzeuge.

Werkstoff


Fluor-Kautschuk (FKM)

Bezeichnung	75 FKM 585
Farbe	dunkelbraun
Härte	75 Shore A
Versteifungsblech	unlegierter Stahl DIN EN 10027-1
Feder	Federstahl DIN EN 10270-1

Einsatzbereich

Einbau & Montage

Welle

Toleranz	ISO h 11
Rundheit	IT 8
Rauheit	$R_a = 0.2 0.8 \mu m$
	$R_z = 1.0 5.0 \mu m$
	$R_{max} = <6.3 \mu m$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

Gehäusebohrung

Toleranz	ISO H8
Rauheit	R _z = 10 25 μm

Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760.

Abmessungsbereich für Wellen-Ø d₁

Simmerring BAUM	6 220 mm
Simmerring BAUMSL	8 220 mm

Simmerring Radiamatic® EWDR aus PTFE

Simmerring Radiamatic® EWDR

Produktbeschreibung

Druckentlasteter Simmerring mit einem Druckring aus PTFE-Compound, einem Edelstahl-Klemmring und einem O-Ring (FKM) als Sekundärdichtung.

Produktvorteile

Sicher bei gleichzeitig hohem Druck und hoher Geschwindigkeit

- Niedrige Verlustleistung
- Niedrige Leckagerate
- Einfache Montage
- Bei Wartung oder Austausch der Dichtung muss die Welle nicht bearbeitet werden.

Anwendung

- Primärdichtung in Pumpen und Verdichtern
- Drehdurchführungen für Kühl- und hydraulische Flüssigkeiten sowie Gase
- Sicherheitsdichtung in Ergänzung zu Gleitringdichtungen.

Werkstoff

PTFE-Kohle (Standardqualität)	Zulassung nach KTW (Trinkwasser) und BAM (Sauerstoff)
PTFE-Ekonol	positiv beurteilt von TNO, Labor Nutrition and Food Research (NL), für Lebensmittel
Klemmring	Verwendung von Edelstählen

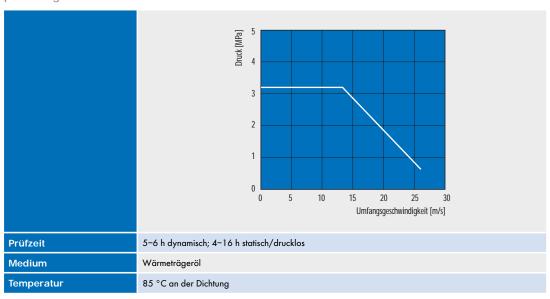
Einsatzbereich

Medien	Beständigkeit entsprechend FKM
Temperatur	−20 +200 °C
Umfangsge- schwindigkeit	max. 20 m/s bei 1 MPa
Druckdifferenz	max. 3 MPa 0,2 MPa
bei Vakuum oder Druckumkehr	bis 0,2 MPa, Gehäuse geschlossen

Oberfläche, Härte

Rauhtiefen	Ra	R _t
Gehäuse	<1,8 µm	<10,0 µm
Welle, drallfrei geschliffen	0,1 0,2 μm	0,5 1,0 μm
Härte der Lauffläche*	50 65 HRC, >0,5 mm Härtungstiefe	

^{*} je nach Werkstoff

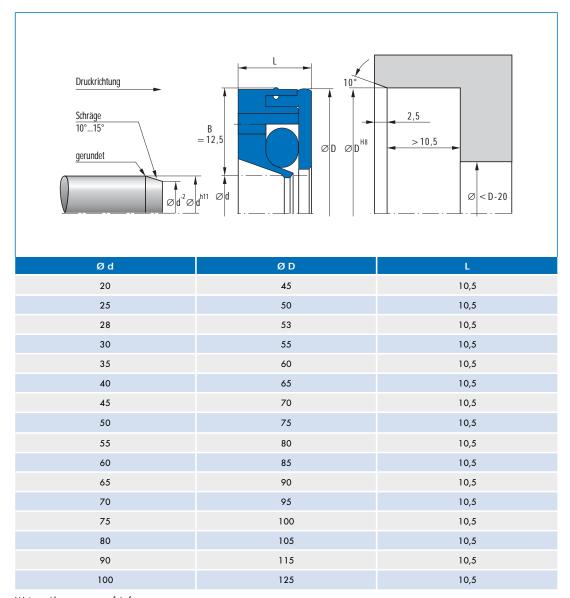

Konstruktionshinweise

Toleranzen

Welle	Wellenschlag, max.*
h11	±0,05 mm

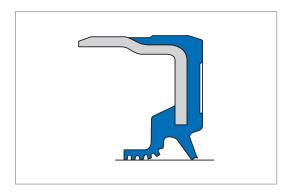
^{*} abhängig von steigender Drehzahl muss der Wellenschlag stärker begrenzt werden. Bitte fragen Sie an.

p · v-Diagramm



Einbau & Montage

Montagereihenfolge: Simmerring Radiamatic EWDR ins Gehäuse einpressen; Welle einschieben.



Weitere Abmessungen auf Anfrage.

Simmerring Energy Saving Seal (ESS)

Simmerring Energy Saving Seal (ESS)

Produktbeschreibung

Federloser Simmerring mit Rückförderdrall.

Produktvorteile

- Sehr geringe Reibung
- Reduzierung von Verlustleistung und Wärmeentwicklung
- Geringer Verschleiß
- Hohe Lebensdauer.

Anwendung

Motoren und Industriegetriebe.

Werkstoff

	75 NBR 106200
Bezeichnung	75 FKM 595 70 ACM 121433

Einsatzbereich

Für eine Drehrichtung der Welle:

т	-40 +100 °C (NBR) -30 +150 °C (ACM) -25 +160 °C (FKM)
V _{U max}	30 m/s
P _{max}	0,02 MPa/0,2 bar

Simmerring High Low Pressure Seal (HLPS)

Simmerring High Low Pressure Seal (HLPS)

Produktbeschreibung

Sonderbauform BA mit federloser Dichtlippe und integriertem Spezialstützring.

Produktvorteile

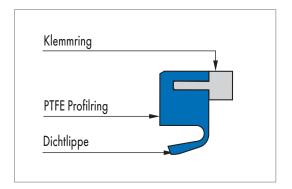
- Zuverlässiges Abdichten bei extremsten Drücken
- Hohe Lebensdauer
- Geringer Verschleiß
- Kompakte Bauform.

Anwendung

Sehr hochbelastete hydrostatische Antriebe.

Werkstoff

Bezeichnung	HNBR
Stützring	PTFE


Einsatzbereich

Т	−40 +120 °C
V _{U max}	2 m/s
p _{max}	0,22 MPa/220 bar

Simmerring Radiamatic® HTS II aus PTFE

Simmerring Radiamatic® HTS II

Produktbeschreibung

Simmerring für offene Einbauräume. Gegenüber herkömmlichen Geometrien deutlich reduzierte Lippenvorspannung bei hoher Leckagesicherheit.

Produktvorteile

- Geringes Reibmoment
- Gute Trockenlaufeigenschaften
- Totraumarm
- Leicht zu reinigen
- Bauform leicht an Einbauraum anpassbar.

Anwendung

Kreiselpumpen, Rührwerke, Getriebe, Gebläse, Kompressoren, Mischer, Werkzeugmaschinen.

Werkstoff

PTFE-Kohle (Standardqualität)	Zulassung nach KTW (Trinkwasser) und BAM (Sauerstoff)
PTFE-Ekonol	positiv beurteilt von TNO, Labor Nutrition and Food Research (NL), für Lebensmittel
Klemmring	Verwendung von Edelstählen

Einsatzbereich

Temperaturbereich in	−20 +200 °C
Umfangsgeschwindigkeit	18 m/s bei 0,15 MPa
Druck abs.	0,6 MPa

Im drucklosen Betrieb sind deutlich höhere Umfangsgeschwindigkeiten möglich. Für den Wechselbetrieb im Druck-/Vakuumbereich stehen Spezialausführungen zur Verfügung.

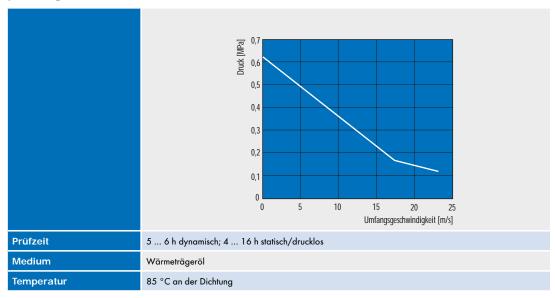
Oberfläche, Härte

Rauhtiefen	R_a	R _t
Gehäuse	<1,8 µm	≤10,0 µm
Welle, drallfrei geschliffen	0,1 0,2 μm	0,5 1,0 μm
Härte der Lauffläche	50 65 HRC, >0,5 mm Härtungstiefe	

Die Oberflächenhärte der Gleitfläche soll ca. 30 HRC betragen.

Traganteil $M_r > 50\%$ bis max. 90% bei Schnittiefe c = Rz/2 und Bezugslinie C ref = 0 %.

Konstruktionshinweise

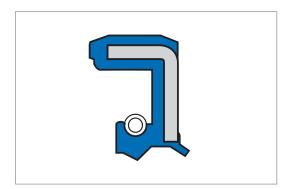

Bitte beachten Sie unsere allgemeinen Konstruktionshinweise.

Toleranzen

Gehäusebohrung	Welle	Wellenschlag, max.*
Н8	h11	±0,05 mm

^{*} abhängig von steigender Drehzahl muss der Wellenschlag stärker begrenzt werden. Bitte fragen Sie an.

p · v Diagramm



Einbau & Montage

Voraussetzung für die einwandfreie Funktion der Dichtung ist die sorgfältige Montage.

Simmerring Premium Pressure Seal (PPS)

Simmerring Premium Pressure Seal (PPS)

Produktbeschreibung

Bauform BA mit patentiertem Dichtlippendesign für Druckbelastungen.

Produktvorteile

- Geringer Verschleiß
- Geringe Reibung
- Hohe Lebensdauer.

Anwendung

Hydrostatische Antriebe, Retarder.

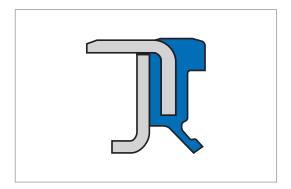
Werkstoff

Bezeichnung	72 NBR 902 75 FKM 595
-------------	--------------------------

Weitere Elastomere auf Anfrage.

Einsatzbereich

т	−40 +100 °C (NBR) −25 +160 °C (FKM)
v _{U max}	15 m/s
p _{max}	0,1 MPa/10 bar


Zulässige Maximalwerte in Abhängigkeit der übrigen Betriebsbedingungen.

Im Vergleich zu der Standardbauform BABSL sind in Abhängigkeit der Betriebsbedingungen bis zu 25% höhere Belastung zulässig.

Simmerring Poly Tech Seal (PTS)

Simmerring Poly Tech Seal (PTS)

Produktbeschreibung

Bauform BA oder BD mit anvulkanisierter PTFE-Dichtlippe mit und ohne Rückförderdrall, optional mit Elastomerschutzlippe oder Vliesschutzlippe.

Produktvorteile

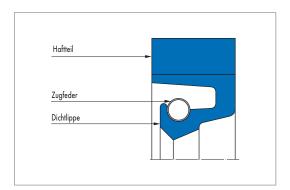
- Gute statische Dichtheit durch Elastomeranbindung
- Geringe Reibung
- Geringer Verschleiß auch bei Trockenlauf
- Thermisch hoch beanspruchbar
- Druckbelastbar
- Mit Rückförderdrall zuverlässige Abdichtung auch bei Sonderflüssigkeiten.

Anwendung

Hydrostatische Antriebe, Kompressoren, Lebensmittel und chemische Industrie, Haushaltsgeräte.

Werkstoff

Bezeichnung	NBR, FKM, HNBR, ACM , PTFE: Diverse Spezialcom- pounds je nach Anwendung
-------------	--


Einsatzbereich

T	−60 +200 °C (je nach Werkstoffkombination)	
V _{U max}	30 m/s	
P _{max}	1,0 MPa/10 bar	

Simmerring Radiamatic® R 35

Simmerring Radiamatic® R 35

Produktbeschreibung

Simmerring mit einem durch Gewebe verstärkten Haftteil, der fest mit der Elastomerdichtlippe verbunden ist. Die Dichtlippe wird zusätzlich mit einer Schraubenzugfeder vorgespannt.

Produktvorteile

Dichtring, der bei ausreichender Schmierung durch das abzudichtende Medium vorzugsweise für Wellendurchführungen in Walzwerken und Großgetrieben im Schwermaschinenbau eingesetzt wird

- Besonders robustes Haftteil
- Dauerhafte Radialanpressuna
- Hochverschleißfest.

Anwendung

Walzwerke, Schiffbau, Stahlwasserbau, Windkraftanlagen.

Werkstoff

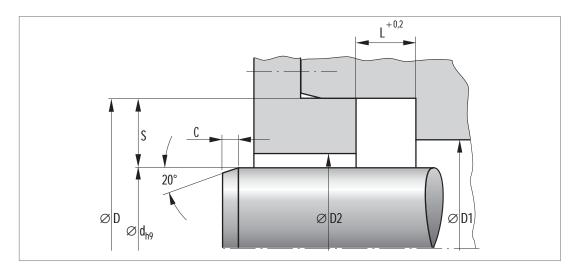
Dichtlippe	Haftteil	Zugfeder
80 NBR B241	imprägniertes Baumwollgewebe B4 B248	ST 1.4571
80 FKM K670	imprägniertes Aramidgewebe C2 K670	ST 1.4571
75 HNBR U467	imprägniertes Aramidgewebe C2 U464	ST 1.4571

Einsatzbereich

Werkstoff	80 NBR B241	80 FKM K670	75 HNBR U467
	Temperaturbereich in °C		
Mineralöle	-30 +100	-10 +180	-20 +140
Wasser	+5 +100	+5 +80	+5 +100
Schmierfette	-30 +100	-10 +180	-20 +140
Walzölemulsion	auf Anfrage		
Druck p in MPa	0,05		
Gleitgeschwindig- keit v in m/s	20	25	25

Andere Medien auf Anfrage. Einsatzparameter sind Richtwerte, nicht alle Parameter gleichzeitig ausnutzen.

Oberflächengüte


Rauhtiefen	R _a	R _{max}
Gleitfläche	≤0,6 µm	≤2,5 µm
Einbauraum	≤4 µm	≤1 <i>5</i> µm

Die Bearbeitung der Lauffläche erfolgt zweckmäßig durch Schleifen im Einstich, d.h. ohne Vorschub. Die Oberflächenhärte soll ca. 60 HRC (Einhärtetiefe min. 0,5 mm) betragen. Mit steigender Umfangsgeschwindigkeit sollte die Gegenlauffläche mit abnehmender Rauhtiefe R_{α} gefertigt werden. Für eine ausreichende Schmierfilmausbildung sollte die Oberfläche nicht zu glatt werden. Richtwert: $R_{\alpha \, min} = 0,1$ µm. Traganteil $M_{r} > 50\%$ bis max. 90% bei Schnittiefe c = Rz/2 und Bezugslinie C ref = 0%. Abrasive Oberflächen, Riefen, Kratzer und Lunker sind zu vermeiden.

simrit

Konstruktionshinweise

Bitte beachten Sie unsere allgemeinen Konstruktionshinweise.

Einbauschrägen

Siehe Abmessung "C" in der Artikelliste.

Toleranzen

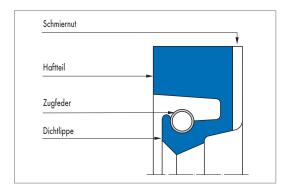
D	Toleranz
<500	Н8
>500	+0,0004 x D

Gesamtexzentrizität

Die zulässige Gesamtexzentrizität (statische und dynamische Exzentrizität) zwischen Welle und Gehäuse ist abhängig von Dichtungsprofil und Umfangsgeschwindigkeit. Bei Bedarf nennen wir Ihnen Richtwerte.

Einbauraum-Empfehlungen für Neukonstruktionen

d	S (Profil)	L
>100	20	16
>250	22	20
<450	25	22
>750	32	25


Einbau & Montage

Für Simmerring Radiamatic R 35 ist ein axial zugänglicher Einbauraum erforderlich, da die Ringe geringen Anzug haben müssen. Die Simmerringe Radiamatic R 35 werden mit Übermaß in der Dichtungshöhe geliefert. Für eine sichere Funktion müssen sie auf das Maß "L" axial verpresst werden. Ein offener Einbauraum mit Abschlussdeckel und Anzugsschrauben ist erforderlich. Für die Verpressung sind bestimmte Verformungskräfte erforderlich. Der Abschlussdeckel sowie die Anzugsschrauben sind entsprechend auszulegen. Bitte fragen Sie nach Richtwerten.

Simmerring Radiamatic® R 36

Simmerring Radiamatic® R 36

Produktbeschreibung

Simmerring mit einem durch Gewebe verstärkten Haftteil, der fest mit der Elastomerdichtlippe verbunden ist. Die Dichtlippe wird zusätzlich mit einer Schraubenzugfeder vorgespannt.

Produktvorteile

Dichtring, der bei ausreichender Schmierung durch das abzudichtende Medium vorzugsweise für Wellendurchführungen in Walzwerken und Großgetrieben im Schwermaschinenbau eingesetzt wird

- Besonders robustes Haftteil
- Dauerhafte Radialanpressuna
- Hochverschleißfest
- Mit konstruktiven Maßnahmen, wie z.B. metallische Abstützung der Dichtlippe, sind höhere Drücke möglich
- Überdruck setzt die Verwendung endloser Dichtungen voraus
- Stützringzeichnungen sowie Einbauanleitungen für offene Dichtungen stehen zur Verfügung.

Anwendung

Walzwerke, Schiffbau, Stahlwasserbau, Windkraftanlagen.

Werkstoff

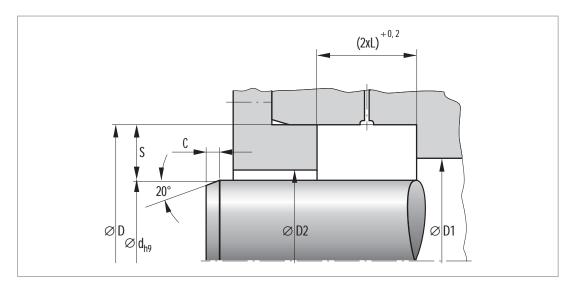
Dichtlippe	Haftteil	Zugfeder
80 NBR B241	imprägniertes Baumwollgewebe B4 B248	ST 1.4571
80 FKM K670	imprägniertes Aramidgewebe	ST 1.4571
75 HNBR U467	imprägniertes Aramidgewebe C2 U464	ST 1.4571

Einsatzbereich

Werkstoff	80 NBR B241	80 FKM K670	75 HNBR U467
	Temperaturbereich in °C		
Mineralöle	-30 +100	-10 +180	-20 +140
Wasser	+5 +100	+5 +80	+5 +100
Schmierfette	-30 +100	-10 +180	-20 +140
Walzölemulsion	auf Anfrage		
Druck p in MPa	0,05		
Gleitgeschwindig- keit v in m/s	20	25	250

Andere Medien auf Anfrage. Einsatzparameter sind Richtwerte, nicht alle Parameter gleichzeitig ausnutzen.

Oberflächengüte


Rauhtiefen	R _a	R _{max}
Gleitfläche	≤0,6 µm	≤2,5 µm
Einbauraum	≤4 µm	≤15 µm

Die Bearbeitung der Lauffläche erfolgt zweckmäßig durch Schleifen im Einstich, d.h. ohne Vorschub. Die Oberflächenhärte soll ca. 60 HRC (Einhärtetiefe min. 0,5 mm) betragen. Mit steigender Umfangsgeschwindigkeit sollte die Gegenlauffläche mit abnehmender Rauhtiefe Ra gefertigt werden. Für eine ausreichende Schmierfilmausbildung sollte die Oberfläche nicht zu glatt werden. Richtwert: Ra min = 0,1 μ m. Traganteil Mr, >50% bis max. 90% bei Schnittiefe c = Rz/2 und Bezugslinie C ref = 0%. Abrasive Oberflächen, Riefen, Kratzer und Lunker sind zu vermeiden.

simrit

Konstruktionshinweise

Einbauschrägen Siehe Abmessung "C" in der Artikelliste.

Toleranzen

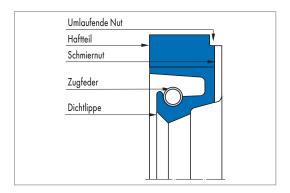
D	Toleranz
<500	Н8
>500	+0,0004 x D

Gesamtexzentrizität

Die zulässige Gesamtexzentrizität (statische und dynamische Exzentrizität) zwischen Welle und Gehäuse ist abhängig von Dichtungsprofil und Umfangsgeschwindigkeit. Bei Bedarf nennen wir Ihnen Richtwerte.

Einbauraum-Empfehlungen für Neukonstruktionen

d	S (Profil)	L
>100	20	16
>250	22	20
<450	25	22
>750	32	25


Einbau & Montage

Für Simmerring Radiamatic R 36 ist ein axial zugänglicher Einbauraum erforderlich, da die Ringe geringen Anzug haben müssen. Die Simmerringe Radiamatic R 36 werden mit Übermaß in der Dichtungshöhe geliefert. Für eine sichere Funktion müssen sie auf das Maß "L" axial verpresst werden. Ein offener Einbauraum mit Abschlussdeckel und Anzugsschrauben ist erforderlich. Für die Verpressung sind bestimmte Verformungskräfte erforderlich. Der Abschlussdeckel sowie die Anzugsschrauben sind entsprechend auszulegen. Bitte fragen Sie nach Richtwerten.

Simmerring Radiamatic® R 37

Simmerring Radiamatic® R 37

Produktbeschreibung

Simmerring mit einem durch Gewebe verstärkten Haftteil, das fest mit der Elastomerdichtlippe verbunden ist. Die Dichtlippe wird zusätzlich mit einer Schraubenzugfeder vorgespannt.

Produktvorteile

Dichtring, der bei ausreichender Schmierung durch das abzudichtende Medium vorzugsweise für Wellendurchführungen in Walzwerken und Großgetrieben im Schwermaschinenbau eingesetzt wird

- Besonders robustes Haftteil
- Dauerhafte Radialanpressuna
- Hochverschleißfest.

Anwendung

Walzwerke, Schiffbau, Stahlwasserbau, Windkraftanlagen.

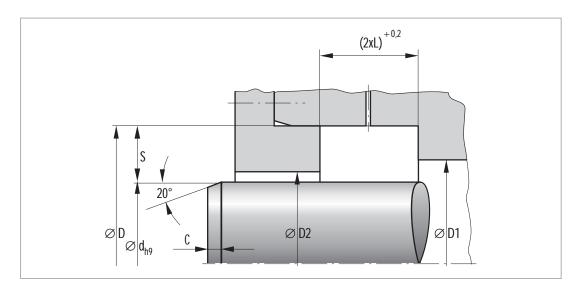
Werkstoff

Dichtlippe	Haftteil	Zugfeder
80 NBR B241	imprägniertes Baumwollgewebe B4 B248	ST 1.4571
80 FKM K670	imprägniertes Aramidgewebe C2K670	ST 1.4571
75 HNBR U467	imprägniertes Aramidgewebe C2U464	ST 1.4571

Einsatzbereich

Werkstoff	80 NBR B241	80 FKM K670	75 HNBR U467
	Temp	eraturbereich	ı in ℃
Mineralöle	−30 +100	-10 +180	-20 +140
Wasser	+5 +100	+5 +80	+5 +100
Schmierfette	−30 +100	-10 +180	-20 +140
Walzöl- emulsion	auf Anfrage		
Druck p in MPa	0,05		
Gleitgeschwindigkeit v in m/s	20	25	250

Andere Medien auf Anfrage. Einsatzparameter sind Richtwerte, nicht alle Parameter gleichzeitig ausnutzen.


Oberflächengüte

Rauhtiefen	R _a	R _{max}
Gleitfläche	≤0,6 µm	≤2,5 µm
Einbauraum	≤4 µm	≤15 µm

Die Bearbeitung der Lauffläche erfolgt zweckmäßig durch Schleifen im Einstich, d.h. ohne Vorschub. Die Oberflächenhärte soll ca. 60 HRC (Einhärtetiefe min. 0,5 mm) betragen. Mit steigender Umfangsgeschwindigkeit sollte die Gegenlauffläche mit abnehmender Rauhtiefe R_{α} gefertigt werden. Für eine ausreichende Schmierfilmausbildung sollte die Oberfläche nicht zu glatt werden. Richtwert: $R_{\alpha \, min} = 0,1$ µm. Traganteil $M_r > 50\%$ bis max. 90% bei Schnittiefe c = Rz/2 und Bezugslinie C ref = 0%. Abrasive Oberflächen, Riefen, Kratzer und Lunker sind zu vermeiden.

Konstruktionshinweise

Einbauschrägen Siehe Abmessung "C" in der Artikelliste.

Toleranzen

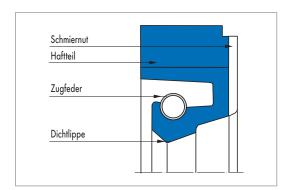
D	Toleranz
<500	Н8
>500	+0,0004 x D

Gesamtexzentrizität

Die zulässige Gesamtexzentrizität (statische und dynamische Exzentrizität) zwischen Welle und Gehäuse ist abhängig von Dichtungsprofil und Umfangsgeschwindigkeit. Bei Bedarf nennen wir Ihnen Richtwerte.

Einbauraum-Empfehlungen für Neukonstruktionen

d	S (Profil)	L
>100	20	16
>250	22	20
<450	25	22
>750	32	25


Einbau & Montage

Für Simmerring Radiamatic R 37 ist ein axial zugänglicher Einbauraum erforderlich, da die Ringe geringen Anzug haben müssen. Die Simmerringe Radiamatic R 37 werden mit Übermaß in der Dichtungshöhe geliefert. Für eine sichere Funktion müssen sie auf das Maß "L" axial verpresst werden. Ein offener Einbauraum mit Abschlussdeckel und Anzugsschrauben ist erforderlich. Für die Verpressung sind bestimmte Verformungskräfte erforderlich. Der Abschlussdeckel sowie die Anzugsschrauben sind entsprechend auszulegen. Bitte fragen Sie nach Richtwerten.

Simmerring Radiamatic® R 58

Simmerring Radiamatic® R 58

Produktbeschreibung

Simmerring mit einem durch Gewebe verstärkten Haftteil, der fest mit der Elastomerdichtlippe verbunden ist. Die Dichtlippe wird zusätzlich mit einer Schraubenzugfeder vorgespannt.

Produktvorteile

Der Dichtring ist mit umlaufender Nut am äußeren Umfang versehen, um eine Zusatzschmierung von außen zu ermöglichen. Der Simmerring Radiamatic R 58 ist für die besonderen Anforderungen fettgeschmierter Lager im Walzwerkbau entwickelt worden

- Besonders robustes Haftteil
- Dauerhafte Radialanpressung
- Hochverschleißfest.

Anwendung

Walzwerke.

Werkstoff

Dichtlippe	Haftteil	Zugfeder
80 NBR B241	imprägniertes Baumwollgewebe B4 B248	ST 1.4571

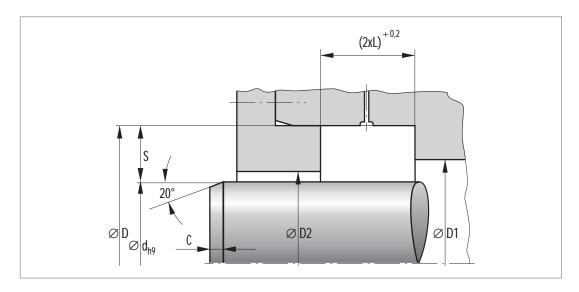
Andere Werkstoffe auf Anfrage.

Einsatzbereich

Werkstoff	80 NBR B241	
	Temperaturbereich in °C	
Mineralöle	−30 +100	
Wasser	+5 +100	
Schmierfette	−30 +100	
Walzölemulsion	auf Anfrage	
Druck p in MPa	0,05	
Gleitgeschwindigkeit v in m/s	15	

Andere Medien auf Anfrage. Einsatzparameter sind Richtwerte, nicht alle Parameter gleichzeitig ausnutzen.

Oberflächengüte


Rauhtiefen	R _a	R _{max}
Gleitfläche	≤0,6 µm	≤2,5 µm
Einbauraum	≤4 µm	≤15 µm

Die Bearbeitung der Lauffläche erfolgt zweckmäßig durch Schleifen im Einstich, d.h. ohne Vorschub. Die Oberflächenhärte soll ca. 60 HRC (Einhärtetiefe min. 0,5 mm) betragen. Mit steigender Umfangsgeschwindigkeit sollte die Gegenlauffläche mit abnehmender Rauhtiefe R_{α} gefertigt werden. Für eine ausreichende Schmierfilmausbildung sollte die Oberfläche nicht zu glatt werden. Richtwert: $R_{\alpha \, min} = 0,1 \, \mu m$. Traganteil $M_r > 50\%$ bis max. 90% bei Schnittiefe c = Rz/2 und Bezugslinie C ref = 0%. Abrasive Oberflächen, Riefen, Kratzer und Lunker sind zu vermeiden.

Konstruktionshinweise

Einbauschrägen Siehe Abmessung "C" in der Artikelliste.

Toleranzen

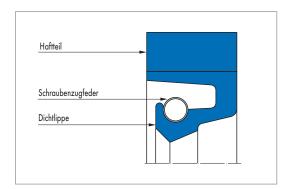
D	Toleranz
<500	H8
>500	+0,0004 x D

Gesamtexzentrizität

Die zulässige Gesamtexzentrizität (statische und dynamische Exzentrizität) zwischen Welle und Gehäuse ist abhängig von Dichtungsprofil und Umfangsgeschwindigkeit. Bei Bedarf nennen wir Ihnen Richtwerte.

Einbauraum-Empfehlungen für Neukonstruktionen

d	S (Profil)	L
>100	20	16
>250	22	20
<450	25	22
>750	32	25


Einbau & Montage

Für Simmerring Radiamatic R 58 ist ein axial zugänglicher Einbauraum erforderlich, da die Ringe geringen Anzug haben müssen. Die Simmerringe Radiamatic R 58 werden mit Übermaß in der Dichtungshöhe geliefert. Für eine sichere Funktion müssen sie auf das Maß "L" axial verpresst werden. Ein offener Einbauraum mit Abschlussdeckel und Anzugsschrauben ist erforderlich. Für die Verpressung sind bestimmte Verformungskräfte erforderlich. Der Abschlussdeckel sowie die Anzugsschrauben sind entsprechend auszulegen. Bitte fragen Sie nach Richtwerten.

Simmerring Radiamatic® R 35 LD

Simmerring Radiamatic® R 35 LD

Produktbeschreibung

Simmerring mit einem durch Gewebe verstärkten Haftteil, der fest mit der Elastomerdichtlippe verbunden ist. Die Dichtlippe wird zusätzlich mit einer Schraubenzugfeder vorgespannt.

Produktvorteile

Dichtring, der bei ausreichender Schmierung durch das abzudichtende Medium vorzugsweise für Wellendurchführungen in Walzwerken und Großgetrieben im Schwermaschinenbau eingesetzt wird

- Besonders robustes Haftteil
- Dauerhafte Radialanpressung
- Hochverschleißfest.

Mit konstruktiven Maßnahmen, wie z.B. metallische Abstützung der Dichtlippe, sind höhere Drücke möglich. Überdruck setzt die Verwendung endloser Dichtungen voraus. Stützringzeichnungen sowie Einbauanleitungen für offene Dichtungen stehen zur Verfügung.

Anwendung

Walzwerke, Schiffbau.

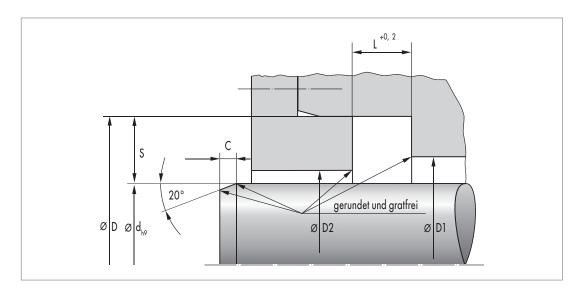
Werkstoff

Dichtlippe	Haftteil	Zugfeder
80 NBR B241	imprägniertes Baumwollgewebe B4 B248	ST 1.4571
70 HNBR U467	imprägniertes Baumwollgewebe C2 U464	ST 1.4571

Einsatzbereich

Werkstoff	80 NBR B241	75 HNBR U467
	Temperaturbereich in °C	
Mineralöle	-30 +100	-20 +140
Wasser	+5 +100	+5 +100
Schmierfette	−30 +100	-20 + 140
Walzölemulsion	auf Anfrage	
Druck p in MPa	0,05	
Gleitgeschwindigkeit v in m/s	20 (NBR), 25 (HNBR)	

Andere Medien auf Anfrage. Einsatzparameter sind Richtwerte, nicht alle Parameter gleichzeitig ausnutzen.

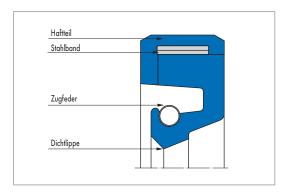


Oberflächengüte

Rauhtiefen	R _a	R _{max}
Gleitfläche	≤0,6 µm	≤2,5 µm
Einbauraum	≤4,0 µm	≤15,0 µm

Die Bearbeitung der Lauffläche erfolgt zweckmäßig durch Schleifen im Einstich, d.h. ohne Vorschub. Die Oberflächenhärte soll ca. 60 HRC (Einhärtetiefe min. 0,5 mm) betragen. Mit steigender Umfangsgeschwindigkeit sollte die Gegenlauffläche mit abnehmender Rauhtiefe Ra gefertigt werden. Für eine ausreichende Schmierfilmausbildung sollte die Oberfläche nicht zu glatt werden. Richtwert: Ra min = 0,1 µm. Traganteil M >50% bis max. 90% bei Schnittiefe c = Rz/2 und Bezugslinie C ref = 0%. Abrasive Oberflächen, Riefen, Kratzer und Lunker sind zu vermeiden.

Konstruktionshinweise


Lieferbare Abmessungen

Profil S x L	Ø-bereich
32 x 25	d >1100 3000

Simmerring Radiamatic® RS 85

Simmerring Radiamatic® RS 85

Produktbeschreibung

Selbsthaltender Simmerring mit zwei funktionsgerechten Elastomerkomponenten und einem integriertem Stahlband. Die Zugfeder unterstützt die radiale Anpressung an die Welle.

Produktvorteile

Selbsthaltender Simmerring für Wellendurchführungen im Schwermaschinenbau.

- Dauerhafter Festsitz
- Dauerhafte Radialanpressung
- Hochverschleißfest.

Für die Montage ist ein axial zugänglicher Einbauraum erforderlich. Bei Druckbeaufschlagung ist der Dichtring auf der druckabgewandten Seite axial abzustützen. Im drucklosen Zustand ist eine axiale Abstützung auf der druckabgewandten nicht erforderlich. Selbsthaltende Simmerring Radiamatic RS 85 sind nur endlos lieferbar.

Anwendung

Walzwerke, Großgetriebe.

Werkstoff

Dichtlippe	Haftteil	Stahlband	Zugfeder
80 NBR B241	85 NBR B247	ST 1.4310	ST 1.4571
75 HNBR U467	85 HNBR 10040	ST 1.4310	ST 1. 4571
80 FKM K670	90 FKM K683	ST 1.4310	ST 1.4571

Einsatzbereich

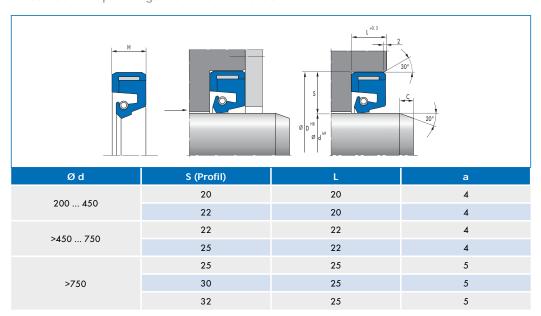
Werkstoff	80 NBR B241	75 HNBR U467	80 FKM K670
		Temperaturbereich in °C	
Mineralöle	-30 +100	−20 +140	-10 +180
Wasser	+5 +100	+5 +100	+5 +80
Schmierfette	-30 +100	-20 +140	-10 +180
Walzölemulsion		auf Anfrage	
Druck p in MPa		0,05	
Gleitgeschwindigkeit v in m/s	20	25	25

Andere Medien auf Anfrage. Einsatzgrenzen sind Richtwerte, nicht alle Parameter gleichzeitig ausnutzen.

Oberflächengüte

Rauhtiefen	R _a	R _{max}
Gleitfläche	≤0,6 µm	≤2,5 μm
Einbauraum	≤4,0 µm	≤15,0 μm

Die Bearbeitung der Lauffläche erfolgt zweckmäßig durch Schleifen im Einstich, d.h. ohne Vorschub. Die Oberflächenhärte soll ca. 60 HRC (Einhärtetiefe min. 0,5 mm) betragen. Mit steigender Umfangsgeschwindigkeit sollte die Gegenlauffläche mit abnehmender Rauhtiefe R_a gefertigt werden. Für eine ausreichende Schmierfilmausbildung sollte die Oberfläche nicht zu glatt werden. Richtwert: R_a min = 0,1 μ m. Traganteil M_r >50% bis max. 90% bei Schnittiefe c = Rz/2 und Bezugslinie C ref = 0%. Abrasive Oberflächen, Riefen, Kratzer und Lunker sind zu vermeiden.

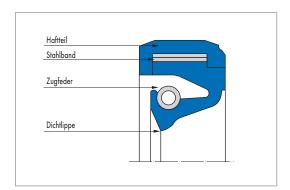

Konstruktionshinweise

Bitte beachten Sie unsere allgemeinen Konstruktionshinweise.

Einbau & Montage

Voraussetzung für die einwandfreie Funktion der Dichtung ist die sorgfältige Montage.

Einbauraum-Empfehlungen für Neukonstruktionen


Einbauschräge

Ød	С
<200	8
>200 500	10
>500 800	13
>800 1200	16
>1200	20

Simmerring Radiamatic® RHS 51

Simmerring Radiamatic® RHS 51

Produktbeschreibung

Hochgeschwindigkeits-Simmerring aus zwei funktionsgerechten Elastomerkomponenten und einem integrierten Stahlband. Zwei ineinanderliegende Zugfedern gewährleisten eine gleichmäßige Radialkraft über die gesamte Umfangslänge der Dichtkante, auch bei hoher Außenmittigkeit der Welle.

Produktvorteile

Selbsthaltender Simmerring für Wellendurchführungen in Walzwerken und Großgetrieben im Schwermaschinenbau. Der Dichtring ist mit Radialnuten versehen, um eine Zusatzschmierung von außen zu ermöglichen. Selbsthaltene Simmerringe sind nur endlos lieferbar

- Dauerhafter Festsitz
- Dauerhafte Radialanpressung
- Hochverschleißfest
- Hoher zulässiger Wellenversatz
- Hohe zulässige Umfangsgeschwindigkeit.

Anwendung

Walzwerke, Großgetriebe.

Werkstoff

Dichtlippe	Haftteil	Stahlband	Zugfeder
80 NBR B241	85 NBR B247	ST 1.4310	ST 1.4571
75 HNBR U467	85 HNBR 10040	ST 1.4310	ST 1. 4571
80 FKM K670	90 FKM K683	ST 1.4310	ST 1.4571

Einsatzbereich

Werkstoff	80 NBR B241	75 HNBR U467	80 FKM K670
	Temperaturbereich in °C		
Mineralöle	−30 +100	-20 +120	-10 +150
Wasser	+5 +100	+5 +100	+5 +80
Schmierfette	−30 +100	-20 +120	-10 +150
Walzölemulsion		auf Anfrage	
Druck p in MPa		0,02	
Gleitgeschwindigkeit v in m/s	25	30	35

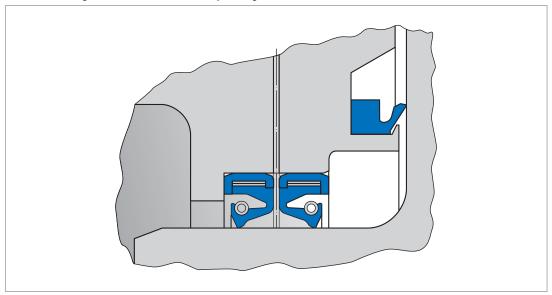
Andere Medien auf Anfrage. Einsatzgrenzen sind Richtwerte, nicht alle Parameter gleichzeitig ausnutzen.

Oberflächengüte

Rauhtiefen	R _a	R _{max}
Gleitfläche	0,15 0,3 μm	≤2,5 µm
Einbauraum	≤4,0 µm	≤15,0 µm

Die Bearbeitung der Lauffläche erfolgt zweckmäßig durch Schleifen im Einstich, d.h. ohne Vorschub. Die Oberflächenhärte soll ca. 60 HRC (Einhärtetiefe min. 0,5 mm) betragen. Mit steigender Umfangsgeschwindigkeit sollte die Gegenlauffläche mit abnehmender Rauhtiefe R_{α} gefertigt werden. Für eine ausreichende Schmierfilmausbildung sollte die Oberfläche nicht zu glatt werden. Richtwert: $R_{\alpha\ min}=0,1\ \mu\text{m}.$ Traganteil $M_r>50\%$ bis max. 90% bei Schnittiefe c = Rz/2 und Bezugslinie C ref = 0%. Abrasive Oberflächen, Riefen, Kratzer und Lunker sind zu vermeiden.

Konstruktionshinweise

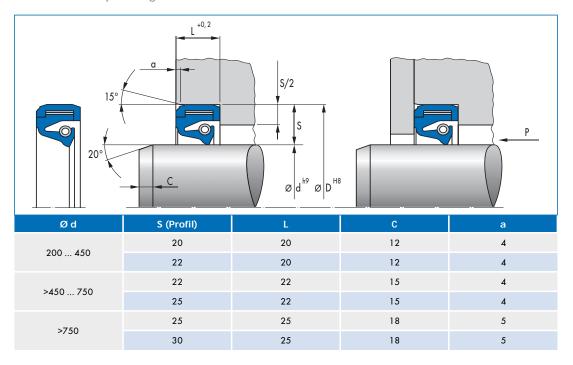

Der zulässige Wellenversatz (statische Exzentrizität, Außermittigkeit) ist vom Wellendurchmesser abhängig.

Wellen-Ø d	Zulässiger Wellenversatz
200 320	2,0 mm
>320 450	2,5 mm
>450	3,0 mm

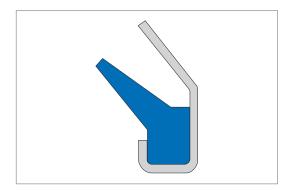
Der zulässige Wellenschlag (dynamische Exzentrizität) ist abhängig von Dichtungsprofil und Umfangsgeschwindigkeit. Bitte fragen Sie nach Richtwerten.

Einbauschräge

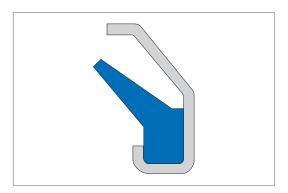
Siehe Abmessung "C" in den Einbauraum-Empfehlungen für Neukonstruktionen.


Typische Dichtungsanordnung

Einbau & Montage


Für die Montage des Simmerring Radiamatic RHS 51 ist ein axial zugänglicher Einbauraum erforderlich. Die selbsthaltenden Simmerringe Radiamatic RHS 51 sind nur endlos lieferbar.

Einbauraum-Empfehlungen für Neukonstruktionen



Simmerring Modular Sealing Component (MSC 01, MSC 02)

Simmerring MSC 01

Simmerring MSC 02

Produktbeschreibung

- Außenmantel: Metallgehäuse
- Schutzlippe ohne Feder.

Produktvorteile

- Einfaches, bewährtes Dichtelement für untergeordnete Einsatzfälle
- Als Abdichtung gegen Fett
- Als zusätzliche Abdichtung gegen mäßigen bis mittleren Staub- und Schmutzanfall
- Kombinierbar als Bestandteil des Simmerrings Modular Sealing Solution (MSS).

Anwendung

- Elektrowerkzeuge
- Industriegetriebe
- Pumpen.

Werkstoff

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	80 NBR 177458
Farbe	schwarz
Härte	80 Shore A

Fluor-Kautschuk (FKM)

Bezeichnung	80 FKM 177459
Farbe	rotbraun
Härte	80 Shore A

Metallgehäuse	tiefgezogenes Stahlblech gelb-
Metallyellause	chromatiert als Korrosionsschutz.

Alternativ in nichtrostendem Stahl auf Anfrage.

Einsatzbereich

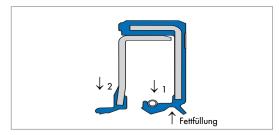
Medien	Fette
Т	-40 +100 °C (NBR) -25 +160 °C (FKM)
v	bis 6 m/s

Zulässige Maximalwerte in Abhängigkeit der übrigen Betriebsbedingungen.

Einbau & Montage

Welle

Toleranz	ISO h 9
Rundheit	IT 8
Rauheit	R _z = 1,0 5,0 μm
	R _{max} = <6,3 μm


Abmessungsbereich für Wellen-Ø D_1

Simmerring MSC 01	10 135 mm
Simmerring MSC 02	15 100 mm

Simmerring Modular Sealing Solution 1 (MSS 1)

Simmerring MSS 1

Produktbeschreibung

- Außenmantel: Elastomer (glatt)
- Federbelastete Dichtlippe und Dichtlippe mit Drallkante ohne Feder
- Zusätzliche Schutzlippe
- Modernes Dichtlippenprofil
- Reibungsoptimierte Primärdichtlippe 1 aus Fluorkautschuk 75 FKM 585
- Sekundärdichtlippe mit zusätzlicher Schutzlippe 2
- Fettfüllung mit Spezialschmierstoff Klüber Petamo GHY 133 N.

Produktvorteile

- Sichere Abdichtung zur Gehäusebohrung auch bei erhöhter Rauheit der Bohrung, Wärmedehnung und geteilten Gehäusen, dadurch ist auch eine Abdichtung dünnflüssiger und gasförmiger Medien möglich.
- Sehr hohe Lebensdauer und Zuverlässigkeit gerade bei starker externer Schmutzbeaufschlagung und/ oder Kontamination (Metallabrieb, Gusssand) des Schmierstoffs
- Optimal bei senkrechter Aggregatanwendung
- Axial sehr schmal bauend
- Sichere Abdichtung zur Gehäusebohrung etc.

Anwendung

Industriegetriebe.

Werkstoff

Acryl-Nitril-Butadien-Kautschuk (NBR)/Fluor-Kautschuk (FKM)

Bezeichnung	72 NBR 902/75 FKM 585
Härte	72 Shore A/75 Shore A

Fluor-Kautschuk (FKM)/Fluor-Kautschuk (FKM)

Bezeichnung	75 FKM 585/75 FKM 585
Härte	75 Shore A/75 Shore A

Versteifungsblech	unlegierter Stahl DIN EN 10027-1
Feder	Federstahl DIN EN 10270-1

Einsatzbereich

Werkstoff- paarung	NBR/FKM	FKM/FKM
Т	−25 +100 °C	−25 +160 °C
v	0 6 m/s	0 6 m/s
р	0 0,05 MPa/0,5 bar	0 0,05 MPa/0,5 bar

Zulässige Maximalwerte in Abhängigkeit der übrigen Betriebsbedingungen.

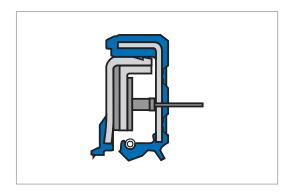
Einbau & Montage

Welle

Toleranz	ISO h 11
Rundheit	IT 8
Rauheit	$R_{\alpha} = 0.2 \dots 0.8 \ \mu m$
	R _z = 1,0 5,0 μm
	$R_{max} = <6.3 \mu m$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

Gehäusebohrung

Toleranz	ISO H8
Rauheit	R _z = 10 25 μm


Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760.

Abmessungsbereich für Wellen-Ø d_1

Simmerring MSS 1	35 145 mm
------------------	-----------

Simmerring Modular Sealing Solution 1+ (MSS 1+ Condition Monitoring)

Simmerring Modular Sealing Solution 1+ (MSS 1+ Condition Monitoring)

Produktbeschreibung

Modifikation der Standardbauform MSS 1 mit Zusatzfunktion zur Erkennung von frühzeitigen Leckagen. Zusatzfunktion: Optischer Sensor und Spezialvlies als Leckagedepot mit Auswerteelektronik zur Übertragung und Interpretation der Signale.

Produktvorteile

Simmerring MSS 1+ CM zeichnen sich aus durch:

- Zuverlässige Warnung vor Leckagen
- Planbare Wartungsintervalle
- Wirtschafliche Kleinserien, keine Werkzeugkosten
- Medienspezifische Anpassung der Auswerteelektronik.

Anwendung

Industriegetriebe, Antriebswellen, Pumpen und andere denkbare Anwendungsgebiete.

Werkstoff

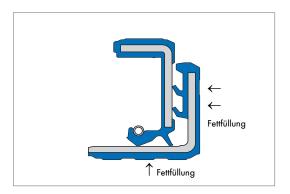
Acryl-Nitril-Butadien-Kautschuk (NBR)/Fluor-Kautschuk (FKM)

Bezeichnung	72 NBR 902/75 FKM 585
Härte	72 Shore A/75 Shore A
Sensor	Sensor, Flachbandkabel

Einsatzbereich

Werkstoffpaarung	NBR/FKM
Т	−25 +100 °C
v	0 6 m/s
р	0 0,05 MPa/0,5 bar

Zulässige Maximalwerte in Abhängigkeit der übrigen Betriebsbedingungen.


Konstruktionshinweise

Abmessungspalette begrenzt, größere Simmerringe sind eventuell mit mehreren Sensoren auszurüsten.

Simmerring Modular Sealing Solution 7 (MSS 7)

Simmerring MSS 7

Produktbeschreibung

- Außenmantel: Elastomer
- Federbelastete Dichtlippe
- Zusätzliche Schutzlippen
- Modernes Dichtlippenprofil
- Hoher Widerstand gegen Schmutzeintritt
- Robuste Lösung
- Fettfüllung zwischen Dichtlippe und Schutzlippe mit Spezialschmierstoff Klüber Petamo GHY 133 N.

Produktvorteile

- Breites Anwendungsspektrum
- Sichere Abdichtung zur Gehäusebohrung auch bei erhöhter Rauheit der Bohrung, Wärmedehnung und geteilten Gehäusen, dadurch Abdichtung dünnflüssiger und gasförmiger Medien möglich
- Zusätzliche axiale Schutzlippe(n) gegen mäßigen und mittleren Staub- und Schmutzanfall von außen.

Anwendung

- Abdichtung von Spezialgetrieben (z.B. Waschstrassen)
- Achsen für Land- und Baumaschinen, Achsen für Sonderfahrzeuge.

Werkstoff

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	72 NBR 902
Härte	72 Shore A
Versteifungsblech	unlegierter Stahl DIN EN 10027-1
Feder	Federstahl DIN EN 10270-1

Werkstoff 75 FKM 585 auf Anfrage.

Einsatzbereich

Werkstoff	72 NBR 902
Т	<80 °C
v	bis 5 m/s
р	bis 0,05 MPa/0,5 bar

Zulässige Maximalwerte in Abhängigkeit der übrigen Betriebsbedingungen.

Einbau & Montage

Welle

Toleranz	ISO h8
Rundheit:	IT 8
Rauheit	R _z = 10 16 μm

Gehäusebohrung

Toleranz	ISO H8
Rauheit	R _z = 10 16 μm

Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760.

Abmessungsbereich für Wellen-Ø d₁

Simmerring MSS 7	35 150 mm
------------------	-----------

Simmerring Cassette Seal Typ 1

Simmerring Cassette Seal Typ 1

Produktbeschreibung

- Ausführung: Sonderbauform, auf Anfrage
- Außenmantel: Elastomer/Blech
- Federbelastete Dichtlippe
- Zusätzliche Schutzlippen
- Hoher Widerstand gegen Schmutzeintritt
- Robuste Lösung.

Produktvorteile

- Verlängerung des Wartungsintervalls der einzelnen Aggregate
- Welle muss nicht gehärtet oder geschliffen werden
- Alte Lösung kann meist durch einen Simmerring Cassette Seal ohne Änderung des Einbauraumes ersetzt werden
- Bei Wartung oder Austausch der Dichtung muss die Welle nicht bearbeitet werden.

Anwendung

Diese Einsatzbeispiele dienen als allgemeine Orientierung hinsichtlich der Hauptanwendungen von Simmerring Cassette Seals und seiner adäquaten Leistung gegenüber Schmutz von außen. Die Wahl des Simmerring Cassette Seal (Typ 1, 2 oder 3) hat unter Berücksichtigung der Anwendungsbedingungen zu erfolgen (Wellenumdrehungen, Öltemperatur usw.)

- Landwirtschaftliche Maschinen (Traktoren)
 - Achsen: Ritzel
- Baumaschinen (Straßenwalzen, Bagger, Gabelstapler, Mischerfahrzeuge)
 - Achsen: Ritzel
 - Zapfwellenantrieb
- Nutzfahrzeuge (Lastwagen, Busse, Anhänger, Spezialfahrzeuge)
 - Achsen: Naben
 - Achsen: Gelenkwellen*
 - Achsen: Ritzel.
 - * bei Wellenaxialbewegung Sonderausführung erforderlich.

Werkstoff

Feder

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	75 NBR 106200
Farbe	schwarz

Fluor-Kautschuk (FKM)

Bezeichnung	75 FKM 595
Farbe	rotbraun
Versteifungsblech	unlegierter Stahl DIN 1624 – EN 10139

Federstahl 17223

Einsatzbereich

Werkstoffpaarung	75 NBR 106200	75 FKM 595
Т	<80 °C	<100 °C
V	bis 7 m/s	bis 9 m/s
р	max. 0,05 MPa/0,5 bar	max. 0,05 MPa/0,5 bar

Bei Werkstoffdefinitionen ist zu berücksichtigen, dass möglicherweise nicht alle extremen Bedingungen gleichzeitig auftreten.

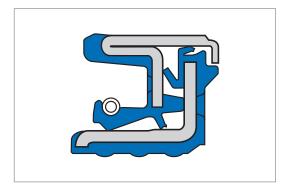
Einbau & Montage

Welle

Toleranz	ISO h8
Rundheit	IT 8
Rauheit	R _z = 10 16 μm

Gehäusebohrung

Toleranz	ISO H8
Rauheit	$R_z = 10 16 \mu m$


Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760. Weitere Informationen auf Anfrage.

Abmessungsbereich für Wellen-Ø D₁

Simmerring Cassette Seal Typ 1	55 133,35 mm

Simmerring Cassette Seal Typ 2

Simmerring Cassette Seal Typ 2

Produktbeschreibung

- Ausführung: Sonderbauform, auf Anfrage
- Außenmantel: Elastomer/Blech
- Federbelastete Dichtlippe
- Zusätzliche Schutzlippen
- Hoher Widerstand gegen Schmutzeintritt
- Robuste Lösung.

Produktvorteile

- Verlängerung des Wartungsintervalls der einzelnen Aggregate
- Welle muss nicht gehärtet oder geschliffen werden
- Alte Lösung kann meist durch einen Simmerring Cassette Seal ohne Änderung des Einbauraumes ersetzt werden
- Bei Wartung oder Austausch der Dichtung muss die Welle nicht bearbeitet werden.

Anwendung

Diese Einsatzbeispiele dienen als allgemeine Orientierung hinsichtlich der Hauptanwendungen von Simmerring Cassette Seals und seiner adäquaten Leistung gegenüber Schmutz von außen. Die Wahl des Simmerring Cassette Seal (Typ 1, 2 oder 3) hat unter Berücksichtigung der Anwendungsbedingungen zu erfolgen (Wellenumdrehungen, Öltemperatur usw.).

Weitere Informationen auf Anfrage.

- Landwirtschaftliche Maschinen
 - Heuwender
 - Sämaschinen
 - Pikiermaschinen
 - Mähdrescher
 - Dreschmaschinen.

Werkstoff

Feder

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	75 NBR 106200
Farbe	schwarz

Fluor-Kautschuk (FKM)

Bezeichnung	75 FKM 595
Farbe	rotbraun
Versteifungsblech	unlegierter Stahl DIN 1624 – EN 10139

Federstahl 17223

Einsatzbereich

Werkstoffpaarung	75 NBR 106200	75 FKM 595
Т	<80 °C	<100 °C
V	bis 5 m/s	bis 7 m/s
р	max. 0,05 MPa/0,5 bar	max. 0,05 MPa/0,5 bar

Bei Werkstoffdefinitionen ist zu berücksichtigen, dass möglicherweise nicht alle extremen Bedingungen gleichzeitig auftreten.

Einbau & Montage

Welle

Toleranz	ISO h8
Rundheit	IT 8
Rauheit	R _z = 10 16 μm

Gehäusebohrung

Toleranz	ISO H8
Rauheit	R _z = 10 16 µm

Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760. Weitere Informationen auf Anfrage.

Abmessungsbereich für Wellen-Ø D₁

Simmerring Cassette Seal Typ 2	35 190 mm
--------------------------------	-----------

Simmerring Cassette Seal Typ 3

Simmerring Cassette Seal Typ 3

Produktbeschreibung

- Ausführung: Sonderbauform, auf Anfrage
- Außenmantel: Elastomer/Blech
- Federbelastete Dichtlippe
- Zusätzliche Schutzlippen
- Hoher Widerstand gegen Schmutzeintritt
- Robuste Lösung.

Produktvorteile

- Verlängerung des Wartungsintervalls der einzelnen Aggregate
- Welle muss nicht gehärtet oder geschliffen werden
- Alte Lösung kann meist durch einen Simmerring Cassette Seal ohne Änderung des Einbauraumes ersetzt werden
- Bei Wartung oder Austausch der Dichtung muss die Welle nicht bearbeitet werden.

Anwendung

Diese Einsatzbeispiele dienen als allgemeine Orientierung hinsichtlich der Hauptanwendungen von Simmerring Cassette Seals und seiner adäquaten Leistung gegenüber Schmutz von außen. Die Wahl des Simmerring Cassette Seal (Typ 1, 2 oder 3) hat unter Berücksichtigung der Anwendungsbedingungen zu erfolgen (Wellenumdrehungen, Öltemperatur usw.).

Weitere Informationen auf Anfrage.

- Landwirtschaftliche Maschinen
 - Traktoren/Nabe
 - Traktoren/Gelenkwellen*
 - Eggen
 - Motorgetriebene Kultivatoren
 - Ackerfräsen
 - Düngerstreumaschinen
- Baumaschinen (Straßenwalzen, Bagger, Gabelstapler, Mischerfahrzeuge)
 - Achsen: Naben
 - Achsen: Gelenkwellen*.

Werkstoff

Feder

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	75 NBR 106200
Farbe	schwarz

Fluor-Kautschuk (FKM)

Bezeichnung	75 FKM 595
Farbe	rotbraun
Versteifungsblech	unlegierter Stahl DIN 1624 – EN 10139

Federstahl 17223

^{*} bei Wellenaxialbewegung Sonderausführung erforderlich.

Einsatzbereich

Werkstoffpaarung	75 NBR 106200	75 FKM 595
Т	<80 °C	<100 °C
V	bis 4 m/s	bis 6 m/s
р	max. 0,05 MPa/0,5 bar	max. 0,05 MPa/0,5 bar

Bei Werkstoffdefinitionen ist zu berücksichtigen, dass möglicherweise nicht alle extremen Bedingungen gleichzeitig auftreten.

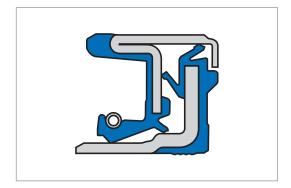
Einbau & Montage

Welle

Toleranz	ISO h8
Rundheit	IT 8
Rauheit	R _z = 10 16 μm

Gehäusebohrung

Toleranz	ISO H8
Rauheit	R _z = 10 16 μm


Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760. Weitere Informationen auf Anfrage.

Abmessungsbereich für Wellen-Ø D₁

Simmerring Cassette Seal Typ 3	25 210 mm
chimien ing cuscotte courtiff c	20 2 . 0

Simmerring Cassette Seal HS (high speed)

Simmerring Cassette Seal HS

Produktbeschreibung

- Ausführung: Sonderbauform, auf Anfrage
- Außenmantel: Elastomer/Blech
- Federbelastete Dichtlippe
- Zusätzliche Schutzlippen
- Hoher Widerstand gegen Schmutzeintritt.

Produktvorteile

- Strategisches Prinzip: Elastomer/Bleche am Innendurchmesser und spezielles Design
- Extrem einsetzbar für Applikationen mit hohen Umdrehungen
- Elastomeroberfläche garantiert statische Dichtung am Innendurchmesser
- Metallfläche garantiert h\u00f6here thermische Konduktion und bessere Hitzeverteilung
- Schneller und sicherer Austausch bei Anwendungen im Ersatzteilbereich
- Wellenoberflächenbearbeitung nicht notwendig.

Anwendung

Diese Einsatzbeispiele dienen als allgemeine Orientierung hinsichtlich der Hauptanwendungen des Simmerring Cassette Seal HS.

Das Simmerring Cassette Seal HS findet Anwendung in Antriebsritzeln, sowohl im Industrie- als auch im Nutzfahrzeugbereich:

- Landwirtschaftliche Maschinen (Traktoren)
- Nutzfahrzeuge (Kleinlastwagen, kleine Spezialfahrzeuge)
- Ritzel
- Differenzial
- Antriebstechnik

Werkstoff

für Laufring:

Fluor-Kautschuk (FKM)

Bezeichnung	75 FKM 585
Farbe	dunkelbraun

für Simmerring:

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	75 NBR 106200
Farbe	schwarz

Acrylat-Kautschuk (ACM)

Feder

Bezeichnung	68 ACM
Farbe	schwarz
Versteifungsblech	unlegierter Stahl DIN 1624 – EN 10139

Federstahl 17223

Einsatzbereich

Werkstoffpaarung	für Simmerring 75 FKM 585	für Laufring 75 NBR 106200	für Laufring 68 ACM
Т	<120 °C	<80 °C	<100 °C
v	bis 12 m/s	-	-
р	max. 0,03 MPa/0,3 bar	-	-

Bei Werkstoffdefinitionen ist zu berücksichtigen, dass möglicherweise nicht alle extremen Bedingungen gleichzeitig auftreten.

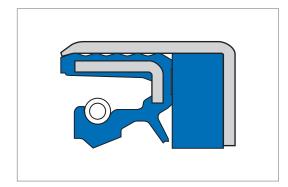
Einbau & Montage

Welle

Toleranz	ISO h8
Rundheit	IT 8
Rauheit	R _z = 10 16 μm

Gehäusebohrung

Toleranz	ISO h8
Rauheit	R _z = 10 16 μm


Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760. Weitere Informationen auf Anfrage.

Abmessungsbereich für Wellen-Ø D₁

Weitere Informationen auf Anfrage.

Simmerring Combi Seal

Simmerring Combi Seal

Produktbeschreibung

- Ausführung: Sonderbauform, auf Anfrage
- Kombination eines Simmerrings und einer zusätzlichen Dichtung gegen Schmutz von außen in einem Gehäuse
- Federbelastete Dichtlippe
- Zusätzliche Schutzlippe
- Vorzugsweiser Einsatz bei allen Anwendungen mit starker Schmutzbeaufschlagung, z.B. in Achsen für Off-Road-Fahrzeuge
- Vorzugsweise Verwendung, im Gegensatz zum Simmerring Cassette Seal, bei Überlagerung von drehenden und translatorischen Bewegungen.

Produktvorteile

- Hohe Lebensdauer
- Hoher Widerstand gegen Schmutzeintritt durch optimale Positionierung von Dicht- und Schutzlippe.

Leistungsfähigkeit gegen Schmutz von außen

Hoher Widerstand gegen Schmutz von außen. Geeignet zum Schutz vor Trockenschmutz.

Anwendung

- Landmaschinen
- Antriebe für landwirtschaftliche Fahrzeuge und in der Allgemeinen Industrie
- Antriebe für rotierende, zeitweise gleitende Wellen in trockenen Anwendungsbereichen.

Werkstoff

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	75 NBR 106200
Farbe	schwarz
Härte	75 Shore A

Fluor-Kautschuk (FKM)

Bezeichnung	75 FKM 595
Farbe	rotbraun
Härte	75 Shore A

Versteifungsblech	unlegierter Stahl DIN 1624 – EN10139
Feder	Federstahl 17223
Schmutzabstreifer	Polyurethan (AU)

Einsatzbereich

Werkstoffpaarung	NBR/AU
Т	bis +80 °C
v	bis 5 m/s
р	max. 0,05 MPa/0,5 bar

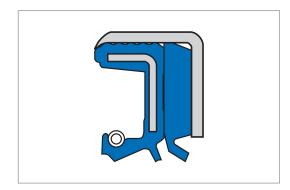
Einbau & Montage

Welle

Toleranz	ISO h 11
Rundheit	IT 8
Rauheit	$R_{\alpha} = 0.2 \dots 0.8 \ \mu m$
	$R_z = 1,0 5,0 \mu m$
	$R_{max} = \le 6.3 \mu m$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

Gehäusebohrung

Toleranz	ISO H8
Rauheit	R _z = 10 16 μm


Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760. Weitere Informationen auf Anfrage.

Abmessungsbereich für Wellen-Ø D_1

Simmerring Combi Seal	30 220 mm
-----------------------	-----------

Simmerring Combi Seal SF5

Simmerring Combi Seal SF5

Produktbeschreibung

- Ausführung: Sonderbauform, auf Anfrage
- Kombination eines Simmerrings und einer zusätzlichen Dichtung gegen Schmutz von außen in einem Gehäuse
- Federbelastete Dichtlippe
- Zusätzliche Schutzlippe
- Vorzugsweiser Einsatz bei allen Anwendungen mit starker Schmutzbeaufschlagung, z.B. in Achsen für Off-Road-Fahrzeuge
- Vorzugsweise Verwendung, im Gegensatz zum Simmerring Cassette Seal, bei Überlagerung von drehenden und translatorischen Bewegungen.

Produktvorteile

- Hohe Lebensdauer
- Hoher Widerstand gegen Schmutzeintritt durch optimale Positionierung von Dicht- und Schutzlippe.

Leistungsfähigkeit gegen Schmutz von außen

Hoher Widerstand gegen Schmutz von außen. Geeignet zum Schutz vor Schlammwasser.

Anwendung

- Landmaschinen
- Antriebe für landwirtschaftliche Fahrzeuge und in der Allgemeinen Industrie (Hinweis: Für rotierende, zeitweise gleitende Wellen in nassen/feuchten Anwendungsbereichen).

Werkstoff

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	75 NBR 106200	
Farbe	schwarz	
Härte	75 Shore A	

Fluor-Kautschuk (FKM)

Bezeichnung	75 FKM 595
Farbe	rotbraun
Härte	75 Shore A

Versteifungsblech	unlegierter Stahl DIN 1624 – EN 10139	
Feder	Federstahl 17223	
Schmutzabstreifer	Polyurethan (AU)	

Einsatzbereich

Werkstoff- paarung	NBR/AU	FKM/AU
Т	bis +80 °C	bis +100 °C
v	bis 4 m/s	bis 6 m/s
р	max. 0,05 MPa/0,5 bar	max. 0,05 MPa/0,5 bar

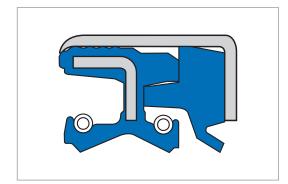
Bei Werkstoffdefinitionen ist zu berücksichtigen, dass möglicherweise nicht alle extremen Bedingungen gleichzeitig auftreten.

Einbau & Montage

Welle

Toleranz	ISO h 11
Rundheit	IT 8
Rauheit	$R_{\alpha} = 0.2 0.8 \mu m$
	R _z = 1,0 5,0 μm
	$R_{max} = \le 6.3 \mu m$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

Gehäusebohrung


Toleranz	ISO H8
Rauheit	R _z = 10 16 μm

Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760. Es wird die Montage mit Hilfe von Versiegelungsmaterial am Aussendurchmesser empfohlen. Weitere Informationen auf Anfrage.

Abmessungsbereich für Wellen-Ø D₁

Simmerring Combi Seal SF6

Simmerring Combi Seal SF6

Produktbeschreibung

- Ausführung: Sonderbauform, auf Anfrage
- Kombination eines Simmerrings und einer zusätzlichen Dichtung gegen Schmutz von außen in einem Gehäuse
- Federbelastete Dichtlippe
- Zusätzliche Schutzlippe
- Vorzugsweiser Einsatz bei allen Anwendungen mit starker Schmutzbeaufschlagung, z.B. in Achsen für Off-Road-Fahrzeuge
- Vorzugsweise Verwendung, im Gegensatz zum Simmerring Cassette Seal, bei Überlagerung von drehenden und translatorischen Bewegungen.

Produktvorteile

- Hohe Lebensdauer
- Hoher Widerstand gegen Schmutzeintritt durch optimale Positionierung von Dicht- und Schutzlippe.

Leistungsfähigkeit gegen Schmutz von außen

Hoher Widerstand gegen Schmutz von außen. Geeignet zum Schutz vor Schlammwasser.

Anwendung

- Landmaschinen
- Antriebe für landwirtschaftliche Fahrzeuge und in der Allgemeinen Industrie.
 Für rotierende, zeitweise gleitende Wellen in nassen/feuchten Anwendungsbereichen.

Werkstoff

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	75 NBR 106200	
Farbe	schwarz	
Härte	75 Shore A	

Fluor-Kautschuk (FKM)

Bezeichnung	75 FKM 595
Farbe	rotbraun
Härte	75 Shore A

Versteifungsblech	unlegierter Stahl DIN 1624 – EN 10139	
Feder	Federstahl 17223	
Schmutzabstreifer	Polyurethan (AU)	

Einsatzbereich

Werkstoff- paarung	NBR/AU	FKM/AU
Т	bis +80 °C	bis +100 °C
v	bis 4 m/s	bis 6 m/s
р	max. 0,05 MPa/0,5 bar	max. 0,05 MPa/0,5 bar

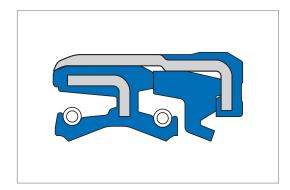
Einbau & Montage

Welle

Toleranz	ISO h 11
Rundheit	IT 8
	$R_{\alpha} = 0.2 \dots 0.8 \ \mu m$
	$R_z = 1.0 5.0 \mu m$
	$R_{max} = \le 6.3 \mu m$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

Gehäusebohrung

Toleranz	ISO H8
Rauheit	R _z = 10 16 µm


Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760. Es wird die Montage mit Hilfe von Versiegelungsmaterial am Außendurchmesser empfohlen. Weitere Informationen auf Anfrage.

Abmessungsbereich für Wellen-Ø D₁

Simmerring Combi Seal SF6	30130 mm
chimienting semblescarers	55 155 mm

Simmerring Combi Seal SF8

Simmerring Combi Seal SF8

Produktbeschreibung

- Ausführung: Sonderbauform, auf Anfrage
- Statische Dichtung am Aussendurchmesser (im Vergleich zum Combi SF6)
- Kombination eines Simmerring und einer zusätzlichen Dichtung gegen Schmutz von außen in einem Gehäuse
- Federbelastete Dichtlippe
- Zusätzliche Schutzlippe
- Vorzugsweiser Einsatz bei allen Anwendungen mit starker Schmutzbeaufschlagung, z.B. in Achsen für Off-Road-Fahrzeuge
- Vorzugsweise Verwendung, im Gegensatz zum Simmerring Cassette Seal, bei Überlagerung von drehenden und translatorischen Bewegungen.

Produktvorteile

- Hohe Lebensdauer
- Hoher Widerstand gegen Schmutzeintritt durch optimale Positionierung von Dicht- und Schutzlippe.

Leistungsfähigkeit gegen Schmutz von außen

Sehr hoher Widerstand gegen Schmutz von außen.
 Geeignet zum Schutz vor Schlammwasser.

Anwendung

- Landmaschinen
- Transmissions Antriebe für landwirtschaftliche Fahrzeuge und in der Allgemeinen Industrie
- Für rotierende, zeitweise gleitende Wellen in nassen/feuchten Anwendungsbereichen.

Werkstoff

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	75 NBR 106200
Farbe	schwarz
Härte	75 Shore A

Fluor-Kautschuk (FKM)

Bezeichnung	75 FKM 595
Farbe	rotbraun
Härte	75 Shore A

Versteifungsblech	unlegierter Stahl DIN 1624 – EN 10139
Feder	Federstahl 17223
Schmutzabstreifer	Polyurethan (AU)

Einsatzbereich

Werkstoff- paarung	NBR/AU	FKM/AU
Т	bis +80 °C	bis +100 °C
v	bis 4 m/s	bis 6 m/s
р	max. 0,05 MPa/0,5 bar	max. 0,05 MPa/0,5 bar

Bei Werkstoffdefinitionen ist zu berücksichtigen, dass möglicherweise nicht alle extremen Bedingungen gleichzeitig auftreten.

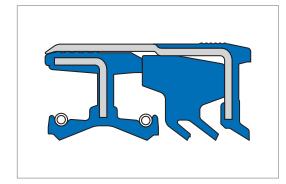
Einbau & Montage

Welle

Toleranz	ISO h11
Rundheit	IT 8
	$R_{\alpha} = 0.2 \dots 0.8 \ \mu m$
	$R_z = 1.0 5.0 \mu m$
	$R_{max} = \le 6.3 \mu m$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

Gehäusebohrung

Toleranz	ISO H8
Rauheit	R _z = 10 16 μm


Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760. Weitere Informationen auf Anfrage.

Abmessungsbereich für Wellen-Ø D_1

Simmerring Combi Seal SF8	37 75 mm
---------------------------	----------

Simmerring Combi Seal SF19

Simmerring Combi Seal SF19

Produktbeschreibung

- Ausführung: Sonderbauform, auf Anfrage
- Kombination eines Simmerrings und einer zusätzlichen Dichtung gegen Schmutz von außen in einem Gehäuse
- Federbelastete Dichtlippe
- Zusätzliche Schutzlippe zur Vermeidung von Schmutzeintritt und zum Schutz bei extremem Einsatzbedingungen
- Vorzugsweiser Einsatz bei allen Anwendungen mit starker Schmutzbeaufschlagung, z.B. in Achsen für Off-Road-Fahrzeuge
- Vorzugsweise Verwendung, im Gegensatz zum Simmerring Cassette Seal, bei Überlagerung von drehenden und translatorischen Bewegungen.

Produktvorteile

- Hohe Lebensdauer
- Hoher Widerstand gegen Schmutzeintritt durch optimale Positionierung von Dicht- und Schutzlippe.

Leistungsfähigkeit gegen Schmutz von außen

Sehr hoher Widerstand gegen Schmutz von außen.
 Geeignet zum Schutz vor Schlammwasser.

Anwendung

- Landmaschinen
- Bei extremen Schmutzanfall und kritischen Applikationen
- Antriebe für landwirtschaftliche Fahrzeuge und in der Allgemeinen Industrie.

Werkstoff

Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	75 NBR 106200
Farbe	schwarz
Härte	75 Shore A

Fluor-Kautschuk (FKM)

Bezeichnung	75 FKM 595
Farbe	rotbraun
Härte	75 Shore A

Versteifungsblech	unlegierter Stahl DIN 1624 – EN 10139
Feder	Federstahl 17223
Schmutzabstreifer	Polyurethan (AU)

Einsatzbereich

Werkstoff- paarung	NBR/AU	FKM/AU
Т	bis +80 °C	bis +100 °C
v	bis 4 m/s	bis 6 m/s
р	max. 0,05 MPa/0,5 bar	max. 0,05 MPa/0,5 bar

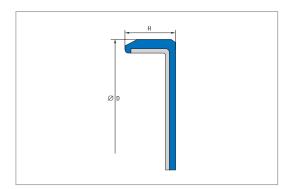
Bei Werkstoffdefinitionen ist zu berücksichtigen, dass möglicherweise nicht alle extremen Bedingungen gleichzeitig auftreten.

Einbau & Montage

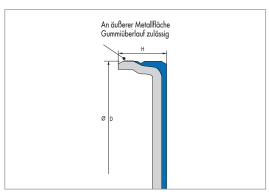
Welle

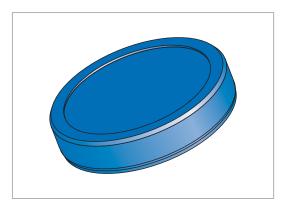
Toleranz	ISO h11
Rundheit	IT 8
Rauheit	$R_{\alpha} = 0.2 \dots 0.8 \ \mu m$
	$R_z = 1.0 5.0 \mu m$
	$R_{max} = \le 6.3 \mu m$
Härte	45 60 HRC
Beschaffenheit	drallfrei, vorzugsweise im Einstich geschliffen

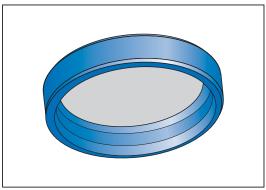
Gehäusebohrung


Toleranz	ISO H8
Rauheit	R _z = 10 16 μm

Voraussetzung für einwandfreie Funktion der Dichtung ist die sorgfältige Montage nach DIN 3760. Weitere Informationen auf Anfrage. Es wird die Montage mit Hilfe von Versiegelungsmaterial am Außendurchmesser empfohlen. Weitere Informationen auf Anfrage.


Abmessungsbereich für Wellen-Ø D₁


Verschlussdeckel GA, GSA


Verschlussdeckel GA

Verschlussdeckel GSA

Verschlussdeckel GA - Ansicht von oben

Verschlussdeckel GA - Ansicht von unten

Produktbeschreibung

- GA (Normalausführung Gummi außen):
 Verschlussdeckel mit einvulkanisierten
 Versteifungsblechen aus Stahlblech
- GSA (Sonderausführung Gummi-Stahl außen):
 Verschlussdeckel mit einvulkanisierten Versteifungsblechen aus Stahlblech mit metallischem Sitz (H8).

Produktvorteile

- Sichere Abdichtung auch bei erhöhter Rauheit der Bohrung, bei Wärmedehnung und geteilten Gehäusen
- Sehr stabile Konstruktion
- Lackierfähig
- Vielfalt bei Standardvarianten.

Anwendung

Verschlussdeckel zur statischen Abdichtung von Bohrungen in Gehäusen mit Presspassung z.B. Wellendurchführungen in Getriebegehäusen.

Werkstoff

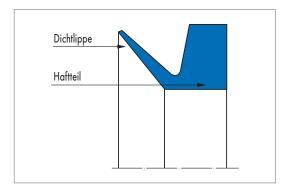
Acryl-Nitril-Butadien-Kautschuk (NBR)

Bezeichnung	75 NBR 99004
Farbe	schwarz
Härte	ca. 75 Shore A
Versteifungsblech	unlegierter Stahl DIN EN 10139 (DIN 1624)

Verschlussdeckel GA, GSA aus anderen Werkstoffen sind auf Anfrage erhältlich.

Einsatzbereich

Medien	alle gängigen Mineralöle
Temperatur	−40 +100 °C


Einbau & Montage

Gestaltung der Aufnahmebohrung

Toleranz	ISO H8
Rauheit Bauform GA	$R_{max} \le 25 \ \mu mr$ $R_{\alpha} = 1,6 \dots 6,3 \ \mu mr$ $R_{z} = 10 \dots 25 \ \mu m$
Rauheit Bauform GSA	$R_{max} <= 16 \ \mu m$ $R_{\alpha} = 0.8 \dots 3.2 \ \mu m$ $R_{z} = 6.3 \dots 16 \ \mu m$

Simmerring Wasserabweiser WA Typ A

Simmerring Wasserabweiser WA Typ A

Produktbeschreibung

Dichtung mit einer axial wirkenden, verschleißfesten Dichtlippe. Typ A ist die Standardausführung für kleine Einbauräume.

Produktvorteile

Wasserabweiser werden in Walzenlagerungen zur Rückhaltung von Fett und Abweisungen von Staub, Zunder, Spritzwasser, Walzölemulsionen und ähnlichen Medien eingesetzt

- Besonders niedrige Reibkräfte
- Hohes axiales Arbeitsvermögen
- Einfache Montage.

Anwendung

Walzwerke.

Werkstoff

Werkstoff	Bezeichnung
NBR	60 NBR B297
FKM	65 FKM K698

FKM auf Anfrage.

Einsatzbereich

Werkstoff	60 NBR B297	65 FKM K698
	Temperatur	bereich in °C
Mineralöle	-	-
Wasser	+5 +100	+5 +80
Schmierfette	-40 +100	-20 +150
Walzölemulsion	-	-
Druck p in MPa	0,03	
Gleitgeschwindigkeit v in m/s	20)*

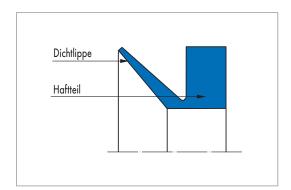
^{*} Die Angaben beziehen sich auf stillstehende WA. Bei umlaufenden Dichtungen gelten andere Grenzwerte.

Oberflächengüte

Rauhtiefen	R _a	R _{max}
Gleitfläche	0,8 µm	≤4 µm
Einbauraum	≤4,0 µm	≤16 µm

Die Oberflächenhärte der Gleitfläche soll ca. 30 HRC betragen. Traganteil $M_{\rm r} > 50\%$ bis max. 90% bei Schnittiefe c = Rz/2 und Bezugslinie C ref = 0%.

Konstruktionshinweise


Bitte beachten Sie unsere allgemeinen Konstruktionshinweise.

Einbau & Montage

Voraussetzung für die einwandfreie Funktion der Dichtung ist die sorgfältige Montage.

Simmerring Wasserabweiser WA Typ AX

Simmerring Wasserabweiser WA Typ AX

Produktbeschreibung

Dichtung mit einer axial wirkenden, verschleißfesten Dichtlippe. Typ AX ist für schwere Belastungen und hohe Auslenkungen ausgelegt.

Produktvorteile

Wasserabweiser werden in Walzenlagerungen zur Rückhaltung von Fett und Abweisungen von Staub, Zunder, Spritzwasser, Walzölemulsionen und ähnlichen Medien eingesetzt.

- Besonders niedrige Reibkräfte
- Hohes axiales Arbeitsvermögen
- Einfache Montage.

Anwendung

Walzwerke.

Werkstoff

Werkstoff	Bezeichnung
NBR	60 NBR B297
FKM	65 FKM K698

Einsatzbereich

Werkstoff	60 NBR B297	65 FKM K698	
	Temperaturbereich in °C		
Mineralöle	-		
Wasser	+5 +100	+5 +80	
Schmierfette	-40 +100	−20 +150	
Walzölemulsion	auf Anfrage		
Druck p in MPa	0,03		
Gleitgeschwindigkeit v in m/s	20*		

^{*} Die Angaben beziehen sich auf stillstehende WA. Bei umlaufenden Dichtungen gelten andere Grenzwerte.

Oberflächengüte

Rauhtiefen	R _a	R _{max}	
Gleitfläche	0,8 µm	≤4 µm	
Einbauraum	≤4,0 µm	≤16 µm	

Die Oberflächenhärte der Gleitfläche soll ca. 30 HRC betragen. Traganteil $M_r > 50\%$ bis max. 90% bei Schnittiefe c = Rz/2 und Bezugslinie C ref = 0%.

Konstruktionshinweise

Bitte beachten Sie unsere allgemeinen Konstruktionshinweise.

Einbau & Montage

Voraussetzung für die einwandfreie Funktion der Dichtung ist die sorgfältige Montage.

Profile für rotatorische Anwendung

Produktübersicht

- Profile
 - Nutringe
 - Gegenringe für Nutringe
 - Hutmanschetten
 - X-Profile
 - Sonstige Spezialprofile
- Schnüre
 - Rundschnur
 - Schnurringe
- Schläuche
 - Schläuche
 - Schlauchringe.

Produktbeschreibung

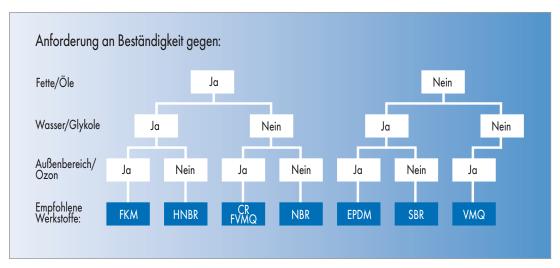
Ob Tunnelbohrmaschine, Schiffsmotor oder Ladeluke. Wann immer große Dichtstellen auftreten, die nicht oder nur sehr kostenintensiv durch Formdichtungen oder O-Ringe abgedichtet werden können, kommen Spezialprofile, -Schnüre oder -Schläuche zum Einsatz. Dafür stehen über 3500 unterschiedliche Profildüsen sowie zahlreiche Werkstoffe zur Verfügung. Darüber hinaus ist die Entwicklung und Produktion kundenspezifischer Designs möglich, wobei die Werkzeugkosten im Vergleich zu formgebundenen Teilen sehr günstig sind.

Produktvorteile

- Abdichtung auch großer Dichtstellen, die nicht durch einen O-Ring oder eine Formdichtung abgedichtet werden können
- Kundenspezifische Produktentwicklung
- Günstige Werkzeugkosten im Vergleich zu formgebundenen Teilen

- Eigener Werkzeugbau, um kurze Lieferzeiten sicherzustellen
- Alle gängigen Elastomere können eingesetzt werden
- Kompetenz bei Spezialwerkstoffen
- Geringe Stückzahlen/Mengen möglich
- Profilringe in NBR und FKM sind am Stoß vulkanisiert lieferbar.
- Vorteile Stoßvulkanisation:
 - Spitzenwerte bei der Zugfestigkeit
 - Langlebige Haltbarkeit durch gleiches Elastomer als Verbindungselement.

Anwendung


Aus Profilen hergestellte Teile erfüllen in zahlreichen Industriebranchen wichtige Dichtungsaufgaben.

- Schwermaschinenbau, z.B. Tunnelvortriebstechnik, Zement-/Gesteinsmühlen
- Anlagenbau, z.B. Turbinen, Absperrventile, Prozesszylinder
- Kraftmaschinen, z.B. Schiffsmotoren
- Separatoren, z.B. Filtertechnik, Großseparatoren
- Maschinenbau, z.B. Industriewaschmaschinen, Drehkränze
- Chemische Industrie, z.B. Behälter/Reaktionsgefäße, Dosiergeräte/-Pumpen
- Medizintechnik, z.B. Komponenten für Diagnosegeräte, Dosiergeräte
- Lebensmittelindustrie, z.B. industrielle Saftpressen,
 Separatoren und Fleischereimaschinen.

Werkstoff

Neben den gängigen Werkstoffen mit kurzen Lieferzeiten werden zahlreiche Spezialwerkstoffe angeboten. Diese zeichnen sich durch hervorragende Qualität und Beständigkeit aus. In der folgenden Übersicht können geeignete Werkstoffe entsprechend Ihrer Anforderungen ausgewählt werden.

Werkstoffauswahl

Werkstoff	Farbe	Temperatureinsatzbereich	
50 NBR 121*	schwarz	−30 +90 °C	
60 NBR 122	schwarz –30 +90 °C		
70 NBR 221	schwarz		
70 NBR 803	grau -25 +90 °C		
70 NBR 173216	schwarz	−30 +70 °C	
72 NBR 872	schwarz	−30 +100 °C	
79 NBR 105	schwarz	−30 +90 °C	
80 NBR 709*	schwarz	−30 +90 °C	
85 NBR 714	schwarz	−20 +90 °C	
88 NBR 101	schwarz	−30 +100 °C	
39 CR 174240*	grau	−40 +80 °C	
55 CR 852	schwarz	−40 +110 °C	
67 CR 853	schwarz	−40 +110 °C	
67 CR 215595	schwarz	−40 +80 °C	
58 EPDM 215550	grau	−40 °C +120 °C	
70 EPDM 275	schwarz	−40 °C +120 °C	
70 FKM 598	grün	−15 °C +200 °C	
70 FKM 215450	schwarz	−10 °C +200 °C	

Werkstoff	Farbe	Temperatureinsatzbereich	
72 FKM 588	schwarz	−10 °C +200 °C	
60 FVMQ 143026	beige	−80 °C +175 °C	
50 VMQ 570	beige	−40 °C +200 °C	
50 VMQ 114721	gelb-transparent	−40 °C +180 °C	
58 VMQ 518	rotbraun	−40 °C +200 °C	
60 VMQ 114722	gelb-transparent	−40 °C +180 °C	
70 VMQ 114723	gelb-transparent	−40 °C +180 °C	
78 VMQ 526	rot	−40 °C +200 °C	

^{*} Sonderwerkstoff, auf Anfrage

Konstruktionshinweise

Toleranzen

Alle Profile, Schnüre und Schläuche werden standardmäßig in DIN ISO 3302-1 E2 hergestellt. In Sonderfällen ist eine Fertigung nach E1 möglich. Grenzabmaße für die Maße der Querschnitte nicht unterstützter Extrusionsteile (alle Maße in mm):

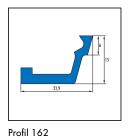
Nennmaß		Toleranzklasse	
über	bis	E1*	E2
0	1,5	0,15	0,25
1,5	2,5	0,20	0,35
2,5	4,0	0,25	0,40
4,0	6,3	0,35	0,50
6,3	10,0	0,40	0,70
10	16	0,50	0,80
16	25	0,70	1,00
25	40	0,80	1,30
40	63	1,00	1,60
63	100	1,30	2,00

^{*} in Einzelfällen teilweise möglich

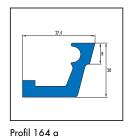
Hutmanschetten

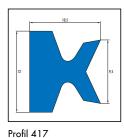
Hutmanschetten dienen zur Abdichtung axial bewegter Stangen. Zum Einsatz an drehenden Wellen ist diese Ausführung nicht geeignet. Die Hutmanschetten werden in extrudierter Form am Stoß geklebt. Alle Hutmanschetten sind mit Zugfedern ausgerüstet. Eine Abstützung der Dichtlippe durch einen metallischen Stützring ist empfehlenswert. Dieser ist nicht Teil des Simrit Lieferprogramms. Hutmanschetten sind kurzfristig lieferbar.

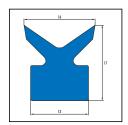
Sonstige Spezialprofile


Profile können wie folgt hergestellt und geliefert werden:

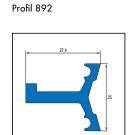
- Meterware
 - mit/ohne Eigenkrümmung
- Profilstücke
 - konfektioniert nach Kundenwunsch (bis 2000 mm ohne Eigenkrümmung möglich)
- Profilringe
 - am Stoß geklebt oder stoßvulkanisiert.

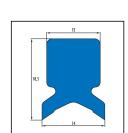

Profildüsen

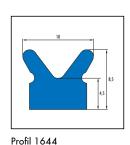

Folgend eine Auswahl aus den etwa 3500 vorrätigen Profildüsen.

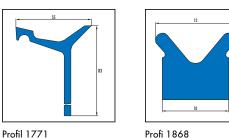

Auf Anfrage werden für spezielle Ausführungen individuelle Werkzeuge entwickelt und gefertigt. Dies beansprucht in der Regel einen Zeitraum von 4 Wochen.

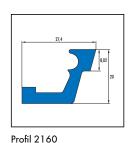
Profil 163

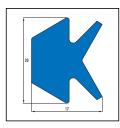






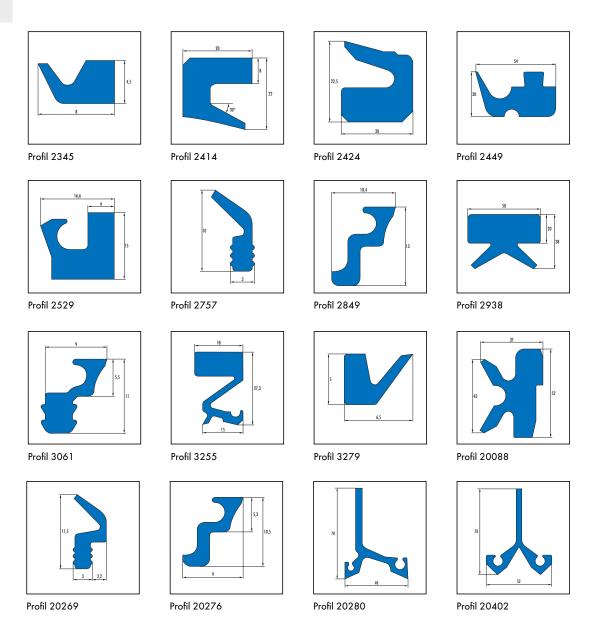



Profil 1347



Profil 1182

Profil 423



Profi 1868

Profil 1222

Profil 2212

