

Prozessregler mit PROFIBUS DP und Modbus Master/Slave

 $^{1}/_{8}$ DIN - 48 x 96

Modell X5

Bedienungsanleitung • B-X5-D5

Mesa Industrie-Elektronik GmbH

Neckarstraße 19 D-45768 Marl

Tel.: +49 (0)2365/97451-0 Fax +49 (0)2365/97451-25

info@mesa-gmbh.de

HINWEISE ZUR ELEKTRISCHEN SICHERHEIT UND ZUM EMV-SCHUTZ

Bitte lesen Sie diese Hinweise aufmerksam, bevor Sie das Instrument installieren. Klasse 2 Gerät für den Tafeleinbau

Dieser Regler entspricht der

EG-Niederspannungsrichtlinie n089/336/CEE sowie der EN 61010 -1 (IEC 1010 - 1) : 90 +A1:92 + A2:95.

Hinsichtlich der EMV erfüllt dieses Instrument die Richtlinie 89/336/CEE mit der Ergänzung 92/31/CEE:

- Vorschriften zu HF-Emissionen

EN50081 - 1 für Wohnumgebungen

EN50081 - 2 für industrielle Umgebungen

- HF-Störfestigkeit

EN50082 - 2 für Industriegeräte und -systeme

Bitte beachten Sie, dass es in der Verantwortung des installierenden Technikers liegt, die Einhaltung aller Sicherheits- und EMV-Schutzbestimmungen sicherzustellen.

Dieser Regler verfügt über keinerlei vom Anwender zu wartenden oder instandzusetzenden Teile. Reparaturen an diesen Reglern können nur von speziell ausgebildetem Personal mit entsprechenden Geräten ausgeführt werden. Daher bietet **Mesa** einen technischen Kundendienst und Reparaturservice.

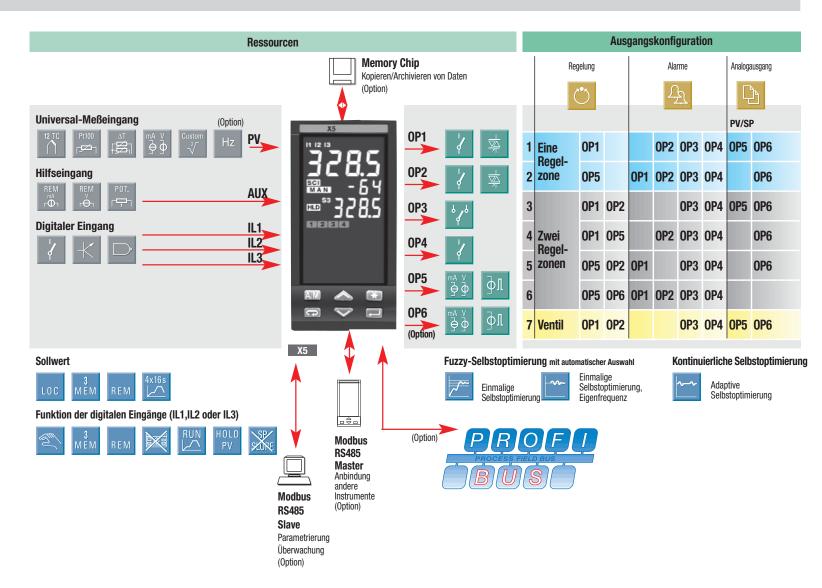
Bitte wenden Sie sich an Mesa Industrie-Elektronik GmbH • Neckarstr. 19 • D-45768 Marl

Alle für Sicherheit und EMV-Schutz relevanten Warnungen und Informationen sind mit dem Zeichen ACE kenntlich gemacht.

INHALT

1	EINFÜ	ÜHRUNG	SEITE	4	5	ANZ	EIGEN	SEITE 53
	1.1	MODELLSCHLÜSSEL	SEITE	5				
					6	EING	SABEN UND BEFEHLE	SEITE 54
2	INST	ALLATION	SEITE	6		6.1	EINGABEN ÜBER DIE TASTATUR	SEITE 55
	2.1	ALLGEMEINE BESCHREIBUNG	SEITE	6		6.2	STEUERUNG ÜBER DIGITALE EINGÄNGE	SEITE 58
	2.2	Umgebungsbedingungen	SEITE	8		6.3	STEUERUNG ÜBER DIE SERIELLE SCHNITTSTE	LLE
	2.3	EINBAU IN SCHALTTAFEL	SEITE	9			(BITTE IN DER ANLEITUNG ZUR SERIELLEN	
							SCHNITTSTELLE NACHLESEN)	
3	VERD	DRAHTUNG	SEITE	10			•	
	3.1	3.1 KLEMMENBLOCK		10	7	RAM	IPENPROGRAMM-FUNKTION (OPTION)	SEITE 59
	3.2	EMPFOHLENE LEITUNGSFÜHRUNG	SEITE	11		7.1	AUFBAU DES PROGRAMMS	SEITE 59
	3.3	VERDRAHTUNGSBEISPIEL	SEITE	12		7.2	ARBEITSWEISE DES PROGRAMMS	SEITE 60
						7.3	PARAMETRIERUNG – PROGRAMM-MENÜ	SEITE 62
4	BEDI	ENUNG	SEITE	22		7.4	Anzeige des Programmstatus	SEITE 64
	4.1	FUNKTION VON TASTATUR UND ANZEIGE	SEITE	22		7.5	PROGRAMM STARTEN/ANHALTEN	SEITE 65
	4.2	DATENEINGABE	SEITE	24				
	4.3	Konfiguration	SEITE	25				
	4.4	Parametrierung	SEITE	34	8	TEC	HNISCHE DATEN	SEITE 69
	4.5	Parameter						
	4.6	ZUGANGSEBENE	SEITE	50				

1 - Einführung


1 EINFÜHRUNG

LEISTUNGSFÄHIG UND FUNKTIONAL

Vielen Dank für den Kauf eines Reglers. Diese Regler repräsentieren die Summe der unsere Ergahrungen bei der Entwicklung und Herstellung von intelligenten, leistungsfähigen und hochzuverlässigen

Die Regler der Serie X5 sind für den Betrieb im industriellen Umfeld konzipiert und bieten als wirklich universell einsetzbare Instrumente eine vollständige Funktionsausstattung.

Je nach Ausführung können diese Regler auch für 4 Rampenprogramme mit bis zu 16 Segmenten programmiert werden.

1.1 MODELLSCHLÜSSEL

Der vollständige Modellschlüssel ist auf dem Typenschild angegeben.

Informationen zum Produktkode können auch über die Tastatur abgerufen werden wie in Abschnitt 5.1 auf Seite 53 beschrieben.

P/N : X5-3150-0000

CONF :

S/N : A0A-9919/0013

V~(L-N): 100÷240V 50/60 Hz - 5W

Modell

	Modell		3asis	gerät				Zul	oehör			
Modell	X5 _	Α	В	С	D	_	E	F	G	0		
Versorgung	gsspannur	ng•	•	•	•		<u> </u>	•	•			Farbe
Ausgänge									Bedie	nung	san	leitung
Serielle Kon	nm. + Mat	h-Pack	ket (M	P)							S	ollwert
Optionen												

Versorgungsspannung	Α
100 240Vac (-15+10%)	3
24Vac (-25+12%)	_
oder 24Vdc (-15+25%)	5

Ausgänge OP1 - OP2			
Relais - Relais			
Triac - Triac	5		

Serielle Kommunikation	C
Keine	0
Mathematik-Paket (MP)	1
RS485 Modbus/Jbus SLAVE + MP	5
RS485 Modbus/Jbus SLAVE + MASTER + MP	6
PROFIBUS DP SLAVE + MP	7
RS485 Modbus/Jbus	0
SLAVE + PROFIBUS + MP	8

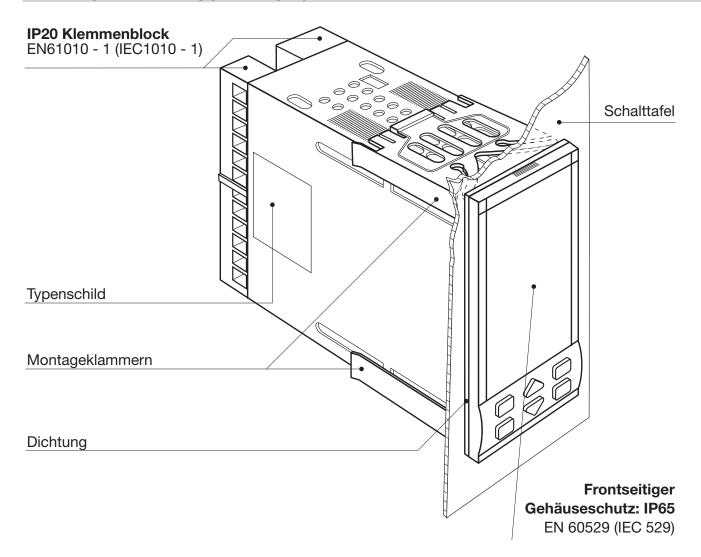
Optionen	D
Keine	0
Frequenzeingang	1
2 ^{ter} SSR-Treiber/Analogausgang (0P6)	4
Frequenzeingang + OP6	6

Sollwertrampen	Ε
Nicht installiert	0
4 Programme mit 16 Segmenten	4

Bedienungsanleitung	F
Italienisch/Englisch (Standard)	0
Französisch/Englisch	1
Deutsch/Englisch	2
Spanisch/Englisch	3

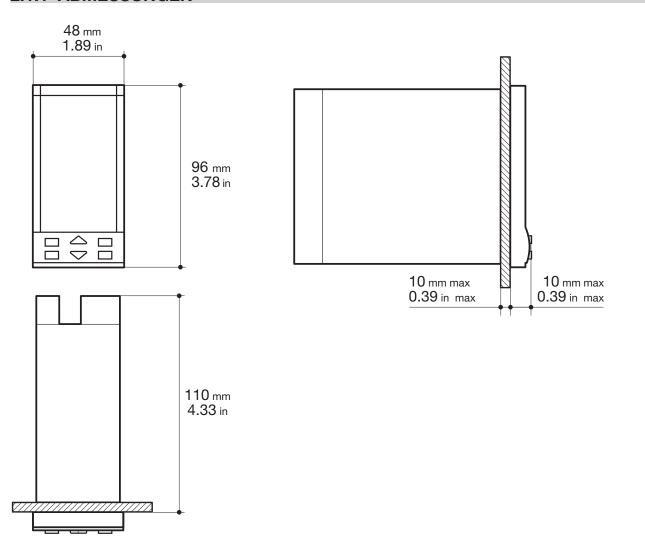
Farbe der Frontplatte	G
Anthrazit (Standard)	0
Beige	1

INSTALLATION

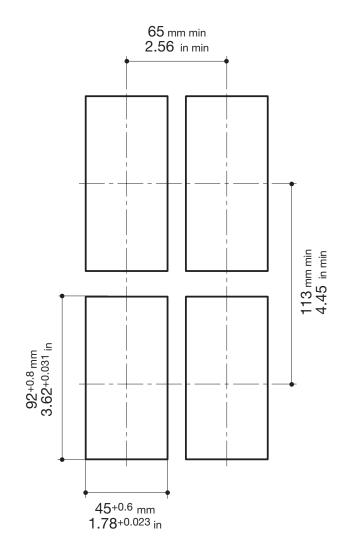

Die Installation darf ausschließlich durch qualifiziertes Personal ausgeführt werden.

Bitte beachten Sie bei der Installation des Reglers alle Anweisungen dieser Bedienungsanleitung. Dies gilt insbesondere für die mit Symbol (a) gekennzeichneten Sicherheits- und EMV-Schutzhinweise.

\triangle


Um Berührung oder Kontakt mit spannungsführenden Teilen zu verhindern, muß der Regler in einem geschlossenen Gehäuse, einem Schaltschrank oder einer Schalttafel installiert werden.

2.1 ALLGEMEINE BESCHREIBUNG



2 - Installation

2.1.1 ABMESSUNGEN

2.1.2 TAFELEINBAU

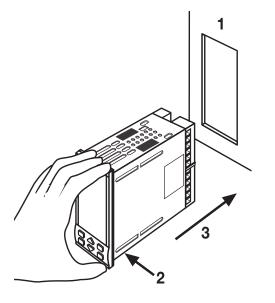
2.2 UMGEBUNGSBEDINGUNGEN

Normale Betriebsbedingungen								
2000	Höhe über N.N. bis zu 2000 m							
‡ ∘c	Temperatur 050°C							
%Rh	Feuchte 595 % r. F., nicht kondensierend							
December De	Ani ala ala adina muna mana	Verselder						

Besondere Be	triebsbedingungen	Vorschlag
2000	Höhe über N.N. > 2000 m	Modell für 24Vac verwenden
	Temperatur >50°C	Lüfter einsetzen
%Rh	Feuchte > 95 % r. F.	Kondensation durch höhere Temperatur verhindern.
And Add Add Add Add Add Add Add Add Add	Leitfähiger Staub	Filter verwenden

Unzulässige Betriebsbedingungen

Korrosive Gase



Explosionsgefährdete Atmosphären

2.3 **EINBAU IN SCHALTTAFEL [1]**

2.3.1 IN AUSSCHNITT **EINSETZEN**

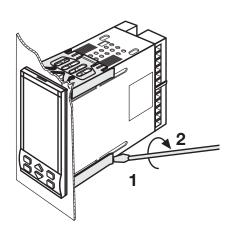
- 1 Tafelausschnitt anfertigen.
- 2 Auf korrekte Positionierung der Dichtung achten
- 3 Instrument von Vorne einsetzen.

2.3.2 BEFESTIGUNG

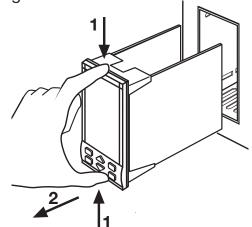
- 1 Montageklammern aufstecken
- 2 Montageklammern zur Schalttafel hin schieben und andrücken, um den Regler zu fixieren.


2.3.3 MONTAGEKLAMMERN LÖSEN

- 1 Schraubendreher zwischen Regler und Klammern einschieben.
- 2 Klammer durch Drehen des Schraubendrehers lösen.

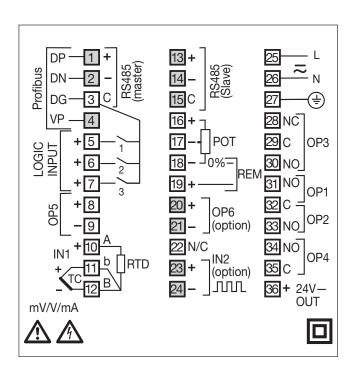

2.3.4 HERAUSZIEHEN DES REGLERS ACE

- 1 An diesen Punkten zusammendrücken
- 2 und herausziehen Das Instrument kann durch statische Elektrizität beschädigt werden.



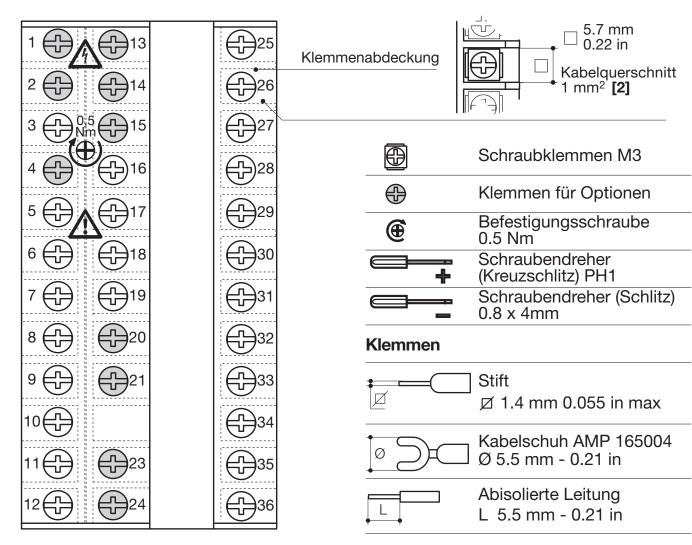
Vor dem Herausziehen eine geerdete Fläche berühren.

[1] For Use on a Flat Surface of a Type 2 and Type 3 'raintight' Enclosure.



3

VERDRAHTUNG

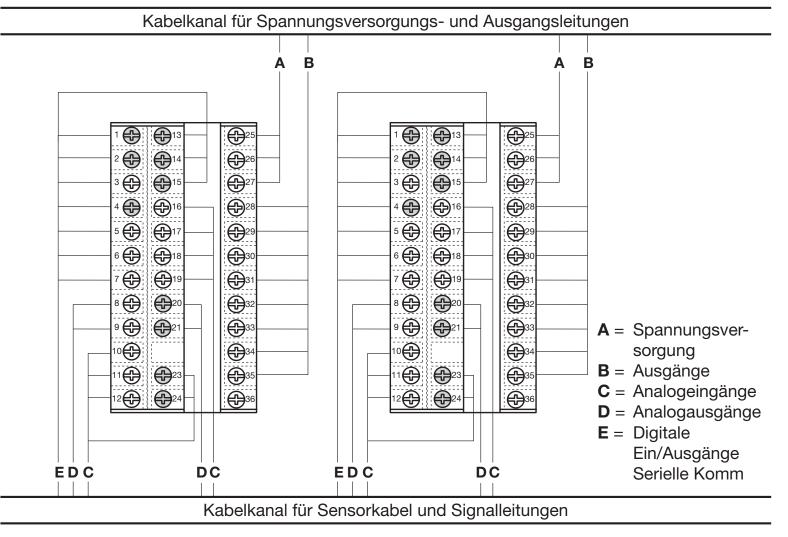

3.1 VERDRAHTUNG [1]

UL notes

- [1] Use 60/70 °C copper (Cu) conductor only.
- [2] Wire size 1 mm² (18 AWG Solid/Stranded)

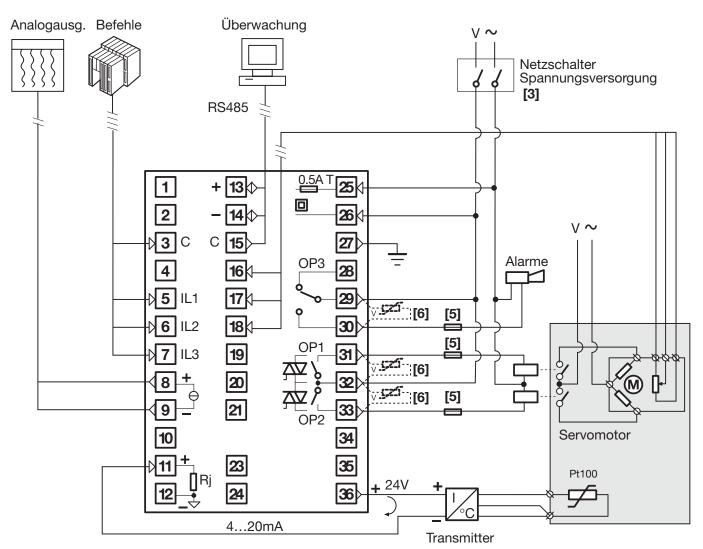
VERDRAHTUNG VORSICHTSMAßNAHMEN ▲ C €

Das Instrument ist für den Einsatz unter rauhen und störintensiven Umgebungen ausgelegt (Stufe IV des Industriestandards IEC 801-4). Dennoch sollten die folgenden Richtlinien beachtet werden:


Bei der Verdrahtung müssen alle relevanten Sicherheitsvorschriften eingehalten werden.

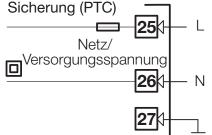
Spannungsversorgungs- und Signalleitungen getrennt von leistungsführenden Leitungen halten. Leitungen nicht in der Nähe von Schützen, Relais oder Elektromotoren führen. Leitungen nicht in der Nähe von Leistungsschaltern führen. Dies gilt insbesondere für Phasenanschnittsteuerungen.

Eingangsleitungen von Netz- und Ausgangsleitungen getrennt führen. Wenn dies nicht möglich ist, abgeschirmte Kabel verwenden und die Abschirmung einseitig erden.


3.2 EMPFOHLENE LEITUNGSFÜHRUNG

3.3 VERDRAHTUNGSBEISPIEL (VENTILREGELUNG)

Hinweis:


- 1] Vergewissern Sie sich, daß die Netzspannung mit der auf dem Typenschild angegebenen Spannung übereinstimmt.
- 2] Schalten Sie die Spannungsversorgung erst ein, wenn alle elektrischen Anschlüsse vollständig verdrahtet wurden.
- 3] Entsprechend der einschlägigen Sicherheitsbestimmungen sollte der Netzschalter mit der MSR-Nummer des Instruments beschriftet werden, das er schaltet. Der Netzschalter sollte für den Bediener einfach zugänglich sein.
- 4] Das Instrument ist mit einer Sicherung von 0.5 Aac (träge) abgesichert. Bei einem Ausfall der Sicherung sollte das Instrument zur Instandsetzung an den Hersteller gesendet werden.
- 5] Zum Schutz des Instruments sollten folgenden Sicherungen vorgesehen werden:
 2Aac träge für 220Vac Relaisausgänge
 4Aac träge für 120Vac Relaisausgänge
 1Aac träge für Triac-Ausgänge
- 6] Relaiskontakte sind bereits durch integrierte Varistoren gesichert.

Bei induktiven Lasten und einer Versorgungsspannung von 24 Vac sind Varistoren Kode A51-065-30D7 zu verwenden, die auf Anfrage lieferbar sind.

3.3.1 \triangle CE SPANNUNGSVERSORGUNG

Schaltnetzteil mit integrierter Sicherung, zweifach galvanisch getrennt

- Standardversion
 Standard-Spannung:
 100...240Vac (-15...+10%)
 Frequenz: 50/60Hz
- Niederspannungs-Netzteil:
 Nennspannung:
 24Vac (-25...+12%)
 Frequenz: 50/60Hz oder
 24Vdc (-15...+25%)
 Leistungsaufnahme 3VA max.
 Sicherung (PTC)

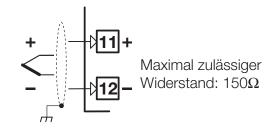
Um die Immunität gegenüber Störungen zu erhöhen empfiehlt es sich, die Erdungsklemme, die für Gebäudeinstallationen vorgesehen ist, nicht anzuschließen.

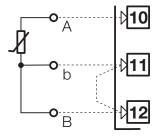
3.3.2 PROZEBEINGANG PV

∆(€

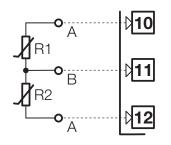
A Für Thermoelement-Typen L-J-K-S-R-T-B-N-E-W

- Polarität beachten.
- Nur Ausgleichsleitung des gleichen Typs wie das eingesetzte Thermoelement verwenden.
- Wenn abgeschirmtes Kabel verwendet wird, die Abschirmung einseitig erden.


B Pt100-Aufnehmer

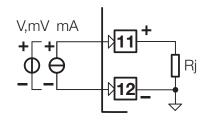

- Bei 3-Drahtanschluß darauf achten, daß alle Leiter den gleichen Querschnitt aufweisen (1mm² min).
 Maximal zulässiger Widerstand: 20Ω pro Leiter
- Bei 2-Drahtanschluß müssen beide Leiter den gleichen Querschnitt aufweisen (1.5mm² min)und die Klemmen 11 und 12 sind mit einer Brücke zu verbinden.

B1 Für Δ T (2x RTD Pt100) Sonderausführung


⚠ Bei einer Kabellänge von 15 m und einem Kabelquerschnitt von 1.5mm² ergibt sich ein Fehler von ca.1°C.

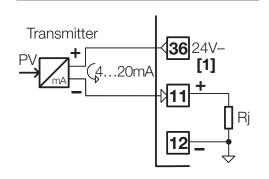
R1 + R2 müssen zusammen kleiner als 320 Ω sein.

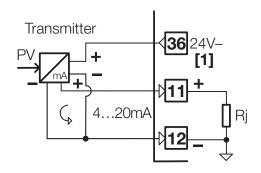
Bei 2-Drahtanschluß sind die Klemmen 11 und 12 mit einer Brücke zu verbinden.



Leiter mit gleicher Länge und gleichem Querschnitt von 1.5 mm² verwenden. Maximal zulässiger Widerstand: 20Ω pro Leiter

3.3.2 PROZEBEINGANG PV

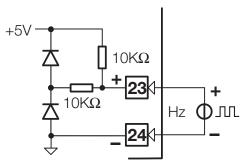

C Für mA, mV


Ri = 30Ω für mA Ri > $10M\Omega$ für mV

 $Ri = 10k\Omega$ für Volt

C1 2-Draht-Transmitter

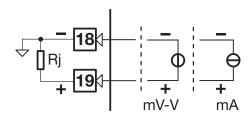
C2 3-Draht-Transmitter


[1] Hilfsversorgung zur
Transmitterspeisung 24Vdc
±20% /30mA max., nicht kurzschlußfest

3.3.3 PROZEßEINGANG - IN2 FREQUENZEINGANG

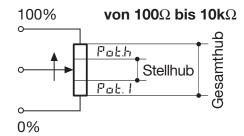
Bei Verwendung des Frequenzeingangs, steht der Eingang IN1 nicht zur Verfügung

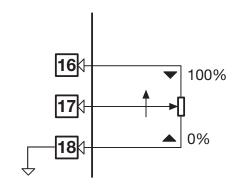
- Low-Pegel: 0...2V /0.5mA max.
- High-Pegel:3...24Volt/~
 0 mA max.
- Frequenzbereich:
 0...2kHz/0...20kHz
 bei der Konfiguration einstellbar
- Sensoren mit NPN-Ausgang oder sauberem Kontakt verwenden


3.3.4 WEITERE EINGÄNGE

A - Externer Sollwert

Strom-Eingangsbereich 0/4...20mA Ri = 30Ω

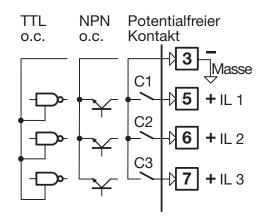

Spannungs-Eingangsbereich 1...5V, 0...5V, 0...10V Ri = $300k\Omega$



Nicht verfügbar mit Frequenzeingang

B- Potentiometer-Eingang

Positionseingang für Ventile



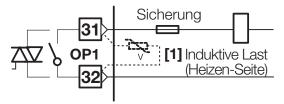
3.3.5 DIGITALER EINGANG

- Der Eingang ist aktiv, wenn der logische Status ON bzw. High anliegt, entprechend einem geschlossenen Kontakt.
- Der Eingang ist inaktiv, wenn der logische Status OFF bzw. Low anliegt, entprechend einem geöffnetem Kontakt.

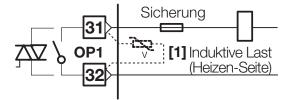
3.3.6 AUSGÄNGE OP1 - OP2 - OP3 - OP4 - OP5 - OP6 (OPTION)

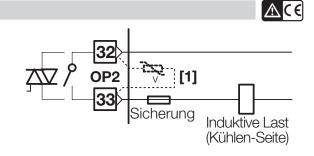
Die Funktionalität der Ausgänge OP1, OP2, OP4, OP5 und OP6 wird bei der Konfiguration definiert. Folgende Kombinationen sind möglich:

	Regelausgänge			Alarmausgang				Analogausgang	
		Primär (Heizen)	Sekundär (Kühlen)	AL1	AL2	AL3	AL4	PV /	SP
A	Eine	0P1			0P2	0P3	0P4	0P5	0P6
В	Regelzone	0P5		0P1	0P2	0P3	0P4		0P6
D		0P1	0P2			0P3	0P4	0P5	0P6
E	Zwei	0P1	0P5		0P2	0P3	0P4		0P6
F	Regelzonen	0P5	0P2	0P1		0P3	0P4		0P6
G		0P5	0P6		0P2	0P3	0P4		
L	Ventilregelung	0P1 ▲	0P2 ▼			0P3	0P4	0P5	OP6

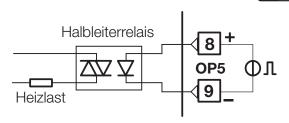

mit:

0P1 - 0P2	Relais- oder Triac-Ausgang
0P3 - 0P4	Relaisausgang
OP5 - OP6	Analoge/digitale Ausgänge zur Regelung oder Signalausgabe

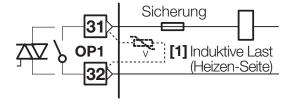

 \triangle

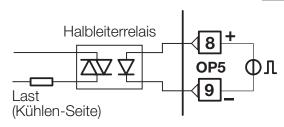

 \triangle

3.3.6-A EIN REGELAUSGANG MIT RELAIS (TRIAC)

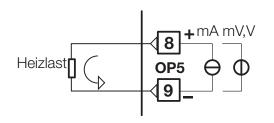


3.3.6-C ZWEI REGELAUSGÄNGE RELAIS (TRIAC)/RELAIS (TRIAC)

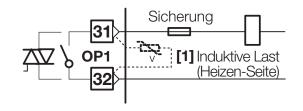


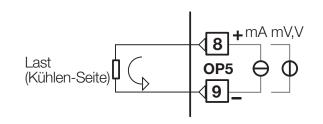


3.3.6-B1 EIN REGELAUSGANG MIT HALBLEITERRELAIS

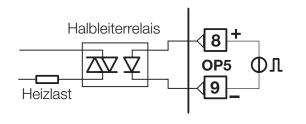


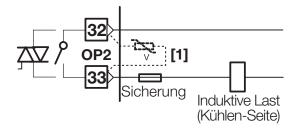
3.3.6-D1 ZWEI REGELAUSGÄNGE MIT RELAIS (TRIAC)/LOGIKAUSGANG



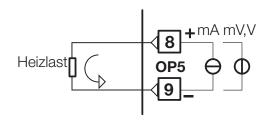


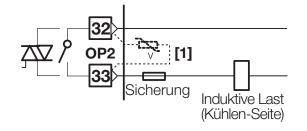
3.3.6-B2 EIN REGELAUSGANG MIT ANALOGAUSGANG △ C€


3.3.6-D2 HEIZEN/KÜHLEN-REGELUNG MIT RELAIS (TRIAC)/ANALOGAUSGANG

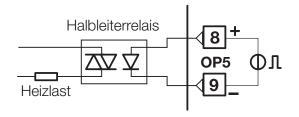


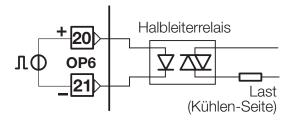
3.3.6-E1 ZWEI REGELAUSGÄNGE MIT HALBLEITERRELAIS / RELAIS (TRIAC)





3.3.6-E2 HEIZEN/KÜHLEN-REGELUNG MIT ANALOGAUSGANG/RELAIS (TRIAC)





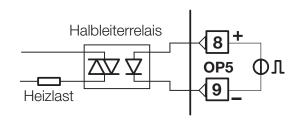
3.3.6-F1 ZWEI REGELAUSGÄNGE HALBLEITERRELAIS / HALBLEITERRELAIS

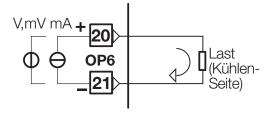
Anmerkungen zu den Seiten 17 - 18 - 19 OP1 - OP2 Relaisausgang

- Einpoliger Schließer, 2A/250 Vac ohmsche Lasten
- Sicherung 2AacT

OP1 - OP2 Triac-Ausgang

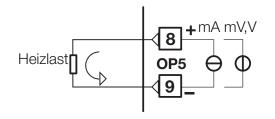
- Schließer für ohmsche Lasten bis 1A/250 Vac max.
- Sicherung 1Aac träge

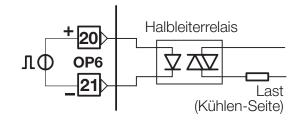

Galvanisch getrennte digitale Ausgänge OP5-OP6


- 0...24Vdc, ±20%, 30 mA max.
 Galvanisch getrennte Analogausgänge OP5-OP6
- 0/4...20mA, 750Ω/15V max.
 0/1...5V, 0...10V, 500Ω/20mA max.

[1] Varistor (nur für induktive Lasten 24Vac)

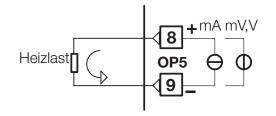
3.3.6-F2 ZWEI REGELAUSGÄNGE MIT HALBLEITERRELAIS / ANALOGAUSGANG

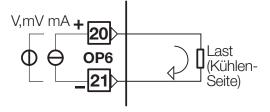




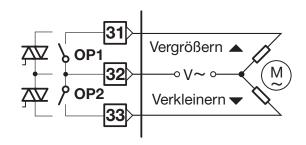
3.3.6-F3 ZWEI REGELAUSGÄNGE

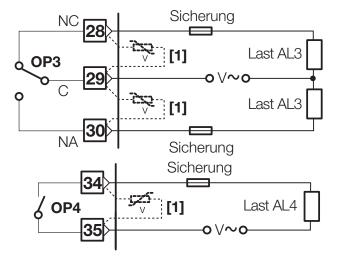
MIT ANALOGAUSGANG / HALBLEITERRELAIS



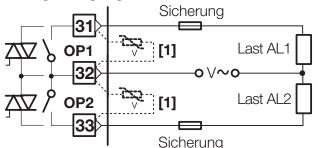


3.3.6-F4 ZWEI REGELAUSGÄNGE MIT ANALOGAUSGANG / ANALOGAUSGANG

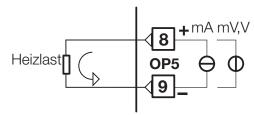


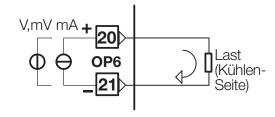


3.3.6-G SERVOMOTOR-AUSGANG RELAIS (TRIAC) / RELAIS (TRIAC)

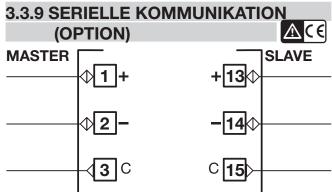

PID-Algorithmus ohne Positionspotentiometer, 3-poliger Ausgang mit 2 Schließern (Vergrößern, Stop, Verkleinern)

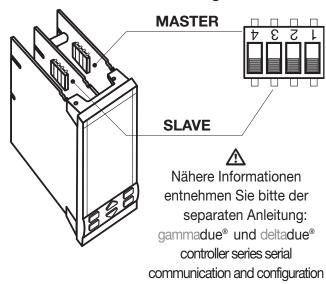
3.3.7 OP1-2-3-4 ALARMAUSGÄNGE ⚠C€




⚠ Die Relais-/Triac-Ausgänge OP1 und OP2 stehen nur dann als Alarmausgänge zur Verfügung, wenn sie nicht bereits als Regelausgänge benutzt werden.

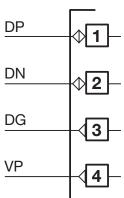
[1] Varistor nur bei induktiven Lasten und 24Vac Versorgung anschließen.


3.3.8 ANALOGAUSGÄNGE OP5 UND OP6 (OPTION)



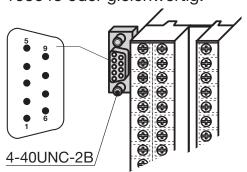
Die Ausgänge OP5 und OP6 können für Regelaufgaben oder für die Ausgabe von PV / SP verwendet werden.

- Galvanische Trennung 500Vac/1 min
- 0/4...20mA, 750Ω / 15Vdc max 0/1...5V, 0...10V, 500Ω / 20mA max.



- Galvanische Trennung 500Vac/1 min Entspricht dem EIA RS485 Standard für Modbus/Jbus
- DIP-Schalter für Terminierung

3.3.10 PROFIBUS DP (OPTION) [

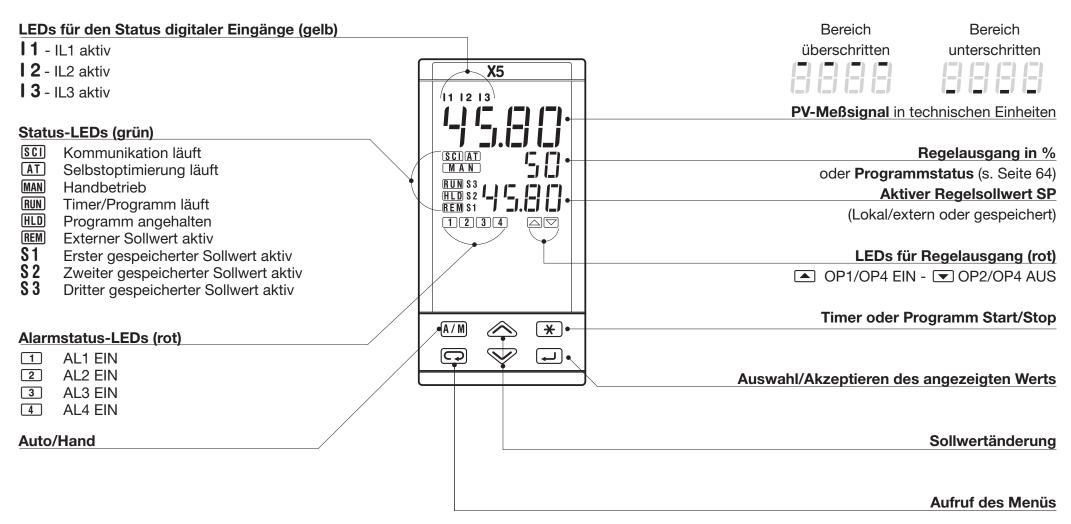

Galvanische Trennung

500Vac /1min

- Entspricht dem EIA RS485 Standard für PROFIBUS DP
- Verbindungskabel: Verdrilltes Kabelpaar entsprechend der PROFIBUS Spezifikationen (z. B. Belden B3079A)
- Max. Länge:100 m bei 12 Mbps

Externe Terminierungswiderstände 220Ω und 390Ω (1/4 W, ±5%) nur bei der ersten und der letzten PROFIBUS-Station anschließen.

"Zur Vereingachtung der Verdrahtung steht ein Sub-D-Stecker (9-polig) zur Verfügung: **AP-ADP/PRESA-DSUB/9P**Mit einem 9 PIN-Steckverbinder Typ ERNI verwenden Artikelnr. 103648 oder gleichwertig.


X5	D-SUB 9-polig	Signal	Beschreibung gemäß PROFIBUS-Spezifikation
1	3	RxD/TxD-P (DP)	Sendung/Empfang +
2	8	RxD/TxD-N (DN)	Sendung/Empfang -
3	5	DGND (DG)	Referenzpotential (angeschlossen an 5V)
4	6	VP (VP)	Versorgung für Abschlusswiderstand (P5V)

Detaillierte Informationen zur Verdrahtung finden Sie im PROFIBUS Product Guide oder im Internet unter:

http://www.profibus.com/online/list

4 BEDIENUNG

4.1.1 FUNKTION VON TASTATUR UND ANZEIGE IM NORMALEN BETRIEB

4.1.2 FUNKTION VON TASTATUR UND ANZEIGE IM NORMALEN BETRIEB

Die Parametereinstellung ist mit einem Timeout ausgestattet. Wenn für mehr als 30 Sekunden keine Taste betätigt wurde, kehrt der Regler wieder zur normalen Betriebsart zurück.

Nachdem der gewünschte Parameter oder Kode gewählt wurde, kann dieser mit den Tasten oder verändert werden.

Die angezeigte Einstellung wird in dem Moment übernommen, in dem die Taste — zur Auswahl des nächsten Parameters betätigt wird. Bei Betätigung der Taste * oder nach 30 Sekunden ohne Tastendruck wird der Wert nicht verändert.

Mit der Taste kann von jedem Parameter aus wieder der normale Betrieb aufgerufen werden.

4.2 PARAMETEREINSTELLUNG

4.2.1 EINGABE NUMERISCHER WERTE

(Beispiel: Änderung eines Sollwerts)

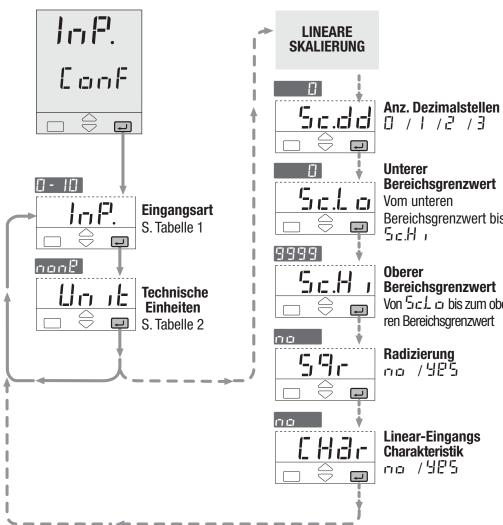
Einmalige Betätigung der Tasten oder ander ändert den angezeigten Wert um eine Einheit, d.h. der Wert wird um den kleinstmöglichen Betrag geändert. Wird die Taste oder gedrückt gehalten, ändert sich der Wert kontinuierlich mit zunehmender Geschwindigkeit. Durch Loslassen der Taste kann die Geschwindigkeit, mit der sich der Wert ändert, wieder verringert werden.

Bei Erreichen des oberen bzw. des unteren Grenzwerts für den eingestellten Parameter bleibt der Wert konstant, auch wenn die Taste oder gedrückt gehalten wird.


Bei Sollwertänderungen: oder einmal drücken, um den lokalen Sollwert anstelle des aktiven Regelsollwerts anzuzeigen.

4.2.2 EINSTELLUNGEN MIT PARAMETERLISTEN

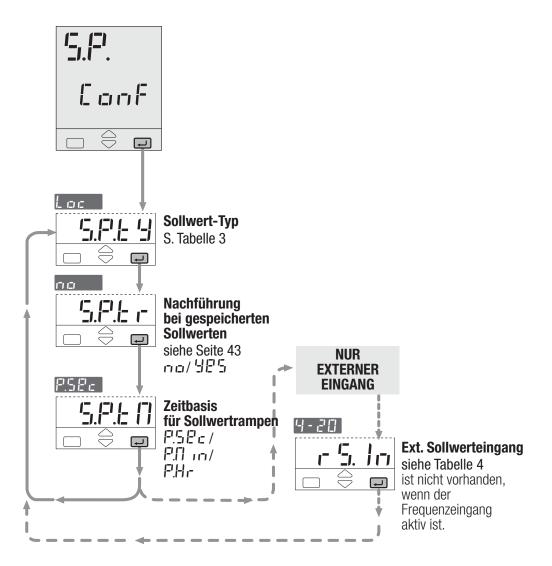
(Eine Übersicht zur Konfiguration findet sich auf Seite 26)


Bei einmaliger Betätigung der Taste oder wird die jeweils nächste oder vorhergehende Einstellmöglichkeit für den Parameter angezeigt. Wird die Taste oder gedrückt gehalten, durchläuft der Regler mit einem Abstand von 0.5 Sekunden alle Einstellmöglichkeiten. Wenn der nächste Parameter aufgerufen wird, wird die angezeigte Einstellung für den Parameter übernommen.

4.3 **KONFIGURATION Eingabe** eines Paßworts 33 Normale **Anzeige** Betriebsart wechselt von -999...9999 (Werkseinstellung: 33) 275.8 C.P.35 Das Paßwort wird nur akzeptiert, wenn es mit \Diamond ب ب dem im Parameter C.P.35 gespeicherten Gedrückt halten, bis Wert übereinstimmt (s. Seite 50) NEIN Zurück zum normalen Betrieb OK **Konfiguration Eingangs-**Sollwert-**Ausgangs-**Alarm-**Ausgangs**der digitalen konfiguration konfiguration konfiguration konfiguration **Konfiguration** Eingänge 1-, (-). 5.8. EanFConf Canf Canf Canf Conf \Diamond (L) (L) (L) (L) Q (L) Ç ٦ (siehe Seite 26) (siehe Seite 27) (siehe Seite 28 und 29) (siehe Seite 30) (siehe Seite 31)

4 - Bedienung

4.3.1 EINGANGSKONFIGURATION

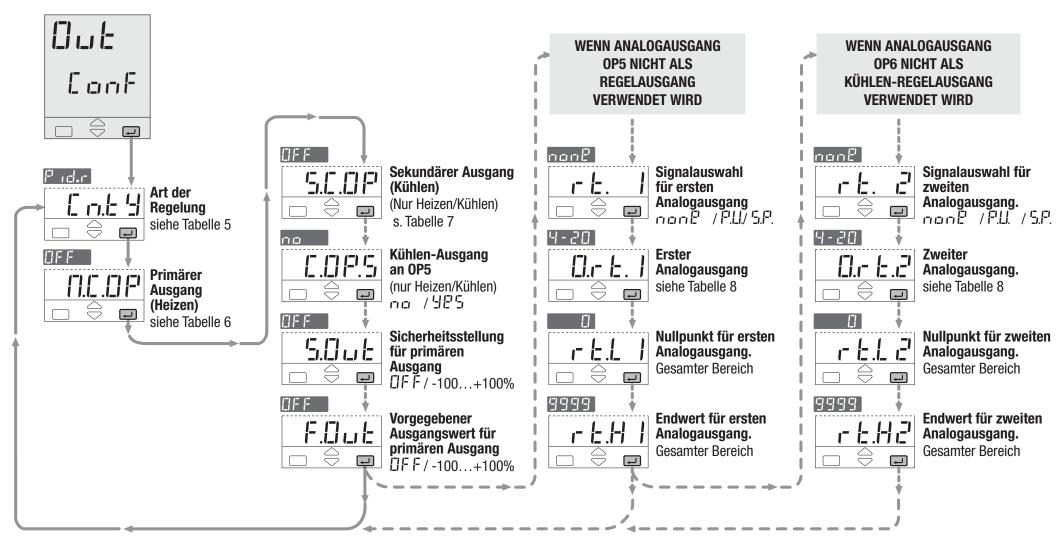


	Tab. 1	Eingangsart		
	Anzeige	Beschreibung	InP.	
	tc. J	0600°C	321112°F	
	Ec. E	01200°C	322192°F	
	Ec. L	0600°C	321112°F	
•	Ec. 5	01600°C	322912°F	
	Ec. r	01600°C	322912°F	
	Ec. E	-200400°C	-328752°F	
	tc. b	01800°C	323272°F	
	tc. n	01200°C [1]	322192°F	
is	60.00	01100°C [2]	322012°F	
	E c.U3	02000°C	323632°F	
	E c.U5	02000°C	323632°F	
	Ec. E	0600°C	321112°F	
	5.1-	Kundenspezifis	cher Bereich	
e-		-200600°C	-3281112°F	
	-642	-99.9300.0°C	-99.9572.0°F	
	delle	-50.050.0°C	-58.0122.0°F	
	0.50	050 mV		
	0.300	0300 mV		
	0 - 5	05 Volt	Technische	
	1-5	15 Volt		
	0 - 10	010 Volt	Einheiten	
	0-20	020 mA		
	4-20	420 mA		
	F - 9.L	02.000 Hz	Frequenz	
	F - 9.H	020.000 Hz	(Option)	

Tab. 2	Technische Einheiten
Anzeige	Beschreibung [] - 1
non8	Keine
: C	Grad Celsius
10 F	Grad Fahrenheit
ΠA	mA
ПП	mV
Ш	Volt
63-	bar
P5	PSI
r h	Rh
Ph	Ph
H2	Hertz

- [1] Thermoelemente
- [2] Thermoelemente

4.3.2 SOLLWERT-KONFIGURATION



Tab. 3	Sollwert-Art	
Anzeige	Beschreibung	5.P.E Y
Loc	Nur lokal	
- 20	Nur extern	
L - r	Lokal/Extern	
Lock	Lokal - nachfüh	rbar
r 2 N.E	Extern - nachfü	hrbar
Pro3	Programm (Opt	ion)

	Ext. Sollwert	c 5. In
Anzeige	Beschreibung	
0 - 5	05 Volt	
1 - 5	15 Volt	
0 - 10	010 Volt	
0 - 20	020 mA	
4-20	420 mA	

4 - Bedienung

4.3.3 AUSGANGSKONFIGURATION

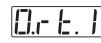
Tab. 5	Regelart	
Anzeige	Beschreibung	E n.E 9
0 F E	Indirekte Wirkung	Ein/Aus
0F.d ,	Direkte Wirkung	EIII/Aus
P , d.d	Direkte Wirkung	P.I.D.
P ,d	Indirekte Wirkung	P.I.D.
U.d , r	Direkte Wirkung	Ventils-
U EU	Indirekte Wirkung	tellung
H.E.L o	Linear	Heizen/
H.C.O.L	Nicht-linear, Öl	Kühlen
H.C.H.2	Nicht-linear, Wasser	rtuillell

Tab. 6	Primärer Ausgang		
Iab. 0	(Heizen)		
Anzeige	Beschreibung	N.C.DP	
OFF	Nicht verwendet		
OP I	Relais/Triac	Schal-	
Lo9	Digital	tend	
0 - 5	05 Volt		
1 - 5	15 Volt	DC-	
0 - 10	010 Volt	_	
0 - 20	020 mA	Signal	
4-20	420 mA		

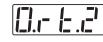
Tab. 7	Sekundärer Au (Kühlen)	usgang
Anzeige		5.C.OP
OFF	Nicht verwendet	
OP 2	Relais/Triac	Schal-
Lo9	Digital	tend
0 - 5	05 Volt	
1-5	15 Volt	DC-
0 - 10	010 Volt	Signal
0 - 20	020 mA	Signal
4-20	420 mA	

Tab. 8	Analogausgänge	
		O.r. E. 1
Anzeige	Beschreibung	0 6.2
0 - 5	05 Volt	
1 - 5	15 Volt	
0 - 10	010 Volt	
0-20	020 mA	
4-20	420 mA	

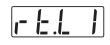
ANALOGAUSGANG


Wenn die Ausgänge OP5 und OP6 nicht für Regelaufgaben verwendet werden, können sie zur Ausgabe des linearisierten PV oder SP eingesetzt werden.

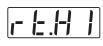
r E. 1


Ausgegebenes Signal

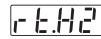
none P.U. /S.P



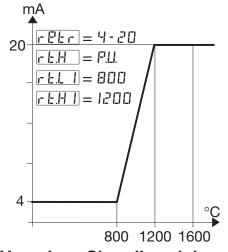
Ausgangsbereich


0-5/1-5*1*0-10 0-20/4-20

Die folgenden Parameter definieren den Bereich, der über den Analogausgang ausgegeben wird:

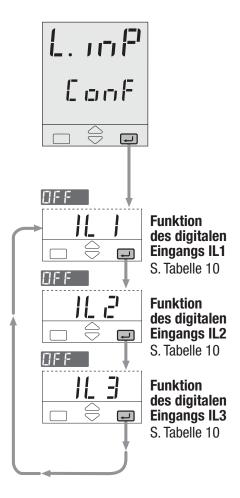


Nullpunkt für Analogausgang

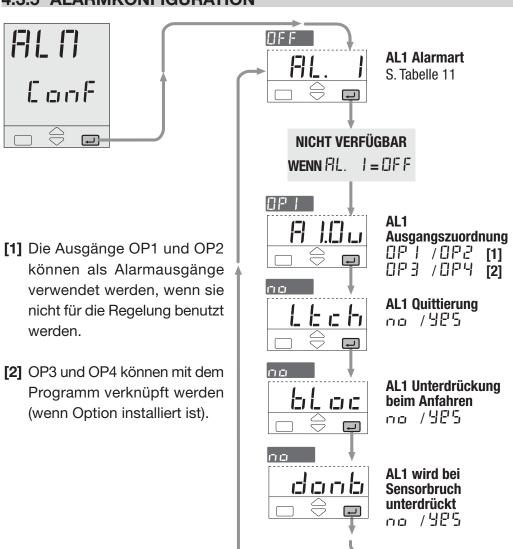


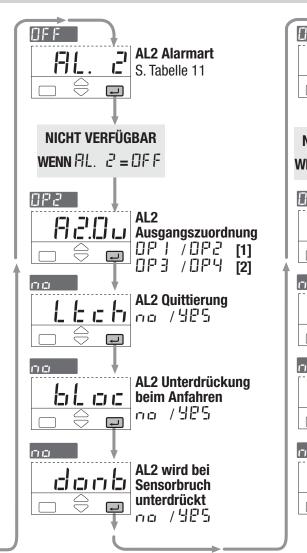
Endwert für Analogausgang

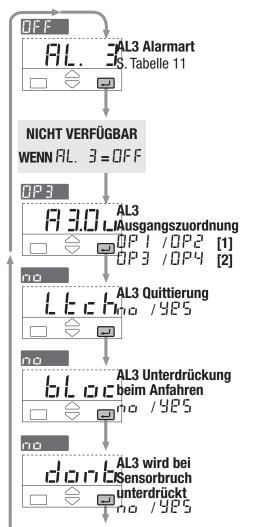
Beispiel:

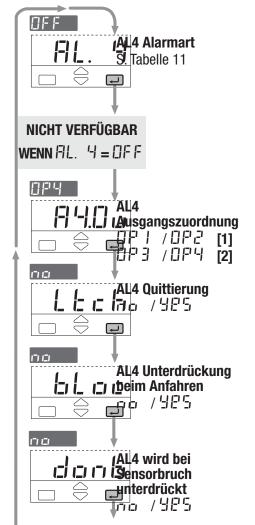

- Thermoelement Typ, Bereich 0...1600°C
- Ausgangsbereich 4...20 mA
- Ausgabe des PV über einen Bereich von 800...1200°C

Um den Signalbereich zu invertieren, kann für r t.l. | eine kleinerer Wert als für r t.l. | eingestellt werden.


4 - Bedienung


4.3.4 KONFIGURATION DER DIGITALEN EINGÄNGE




Tab. 10	Funktion der digitalen	
	Eingänge IL I	
	11.2	
Anzeige	Beschreibung 11.3	
OFF	Nicht verwendet	
L-r	Lokal/Extern	
8.035	Auto/Hand	
5.P. 1	Erster gespeicherter Sollwert	
5.P. <i>2</i>	Zweiter gespeicherter Sollwert	
5.P. 3	Dritter gespeicherter Sollwert	
EE6. 1	Sperren der Tastatur	
5L a. I	Sollwertgradienten sperren 5.F.	
HPU	Meßwert halten	
F.Dut	Konstantes Ausgangssignal	
Pr 9. 1	Erstes Programm	
Pr 9.2	Zweites Programm bis	
Pr 9.3	Drittes Programm zu 3	
무규명식 Viertes Programm		
r H.	Programm Start/Stop	
r 5E	Programm Rücksetzen	
6LcE	Rückstellung der Sperrfunktion beim Einschalten	

4.3.5 ALARMKONFIGURATION

Tab. 11	Alarmart	
		AL I
Anzeige	Beschrei-	AL 3
	bung	AL 4
OF F	Nicht verw vom Progra verwendet	endet oder amm (AL3/AL4)
F 5.H	Vollbereic hsmaxi- malalarm	Absolut
F 5.L	Vollbereic hsminima- lalarm	Absolut
den.H	Abweichun gsmaxima- lalarm	Abweichung
deu.L	Abweichu ngsmini- malalarm	Abwelchang
band	Auslösen außerhalb Bereich	Abweichun gsbereich
L 6 3	Meßkreis o (nur AL1)	offen

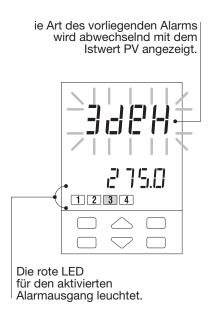
4.3.6 ALARMKONFIGURATION AL1, AL2, AL3, AL4

Es können bis zu vier Alarme konfiguriert werden: AL1, AL2, AL3 und AL4 (s. Seite 31). Für jeden Alarm sind folgende Parameter einstellbar:

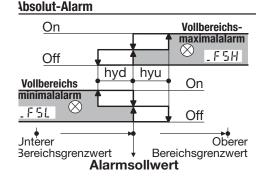
- A Art und Arbeitsweise des Alarms (Tab. 11, Seite 31)
- B Quittierung: LEch
- C Terdrückung des Alarms beim Anfahren: [b] [] []
- D Alarm wird bei Sensorbruch unterdrückt

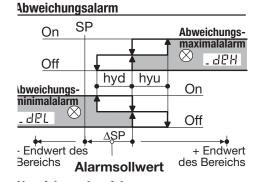
Die Zuordnung des Alarms zu einem der Ausgänge [IF] ...[IF 4]

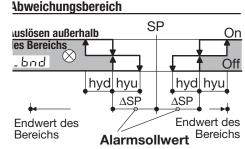
Für die Ausgabe von Alarmen können lediglich Ausgänge verwendet werden, die nicht bereits für die Regelung eingesetzt werden


(s. Abschnitt 3.3.7, Seite 20).

Wenn mehrere Alarme auf einen gemeinsamen Ausgang ausgegeben werden, sind die Alarme mit einem logischen ODER verknüpft.

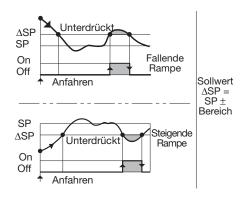

Anzeige beim Auftreten von Alarmen


Diese Funktion kann über die Konfigurationssoftware aktiviert werden.


Nähere Informationen entnehmen Sie bitte der separaten Anleitung: gammadue® und deltadue® controller series serial communication and configuration

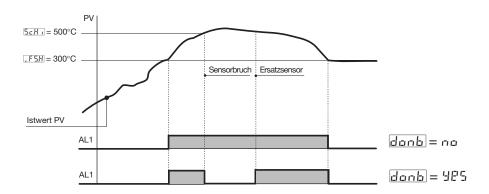
[A] ALARMART UND ARBEITSWEISE

[B] QUITTIERUNG


Wenn die Quittierung aktiviert ist, wird ein aufgetretener Alarm angezeigt, bis er vom Bediener quittiert wurde. Zur Quittierung kann eine beliebige Taste betätigt werden.

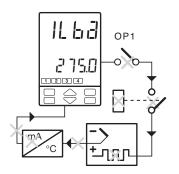
Nach der Quittierung wird das Alarmrelais nur zurückgesetzt, wenn die Alarmbedingung nicht mehr erfüllt ist.

[C] UNTERDRÜCKUNG BEIM ANFAHREN



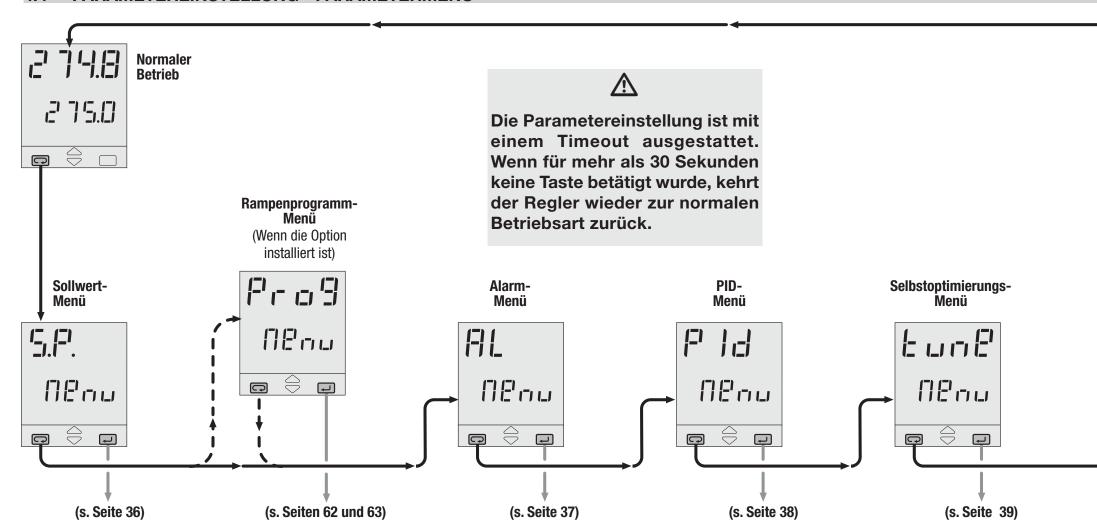
[D] ALARM WIRD BEI SENSORBRUCH UNTERDRÜCKT

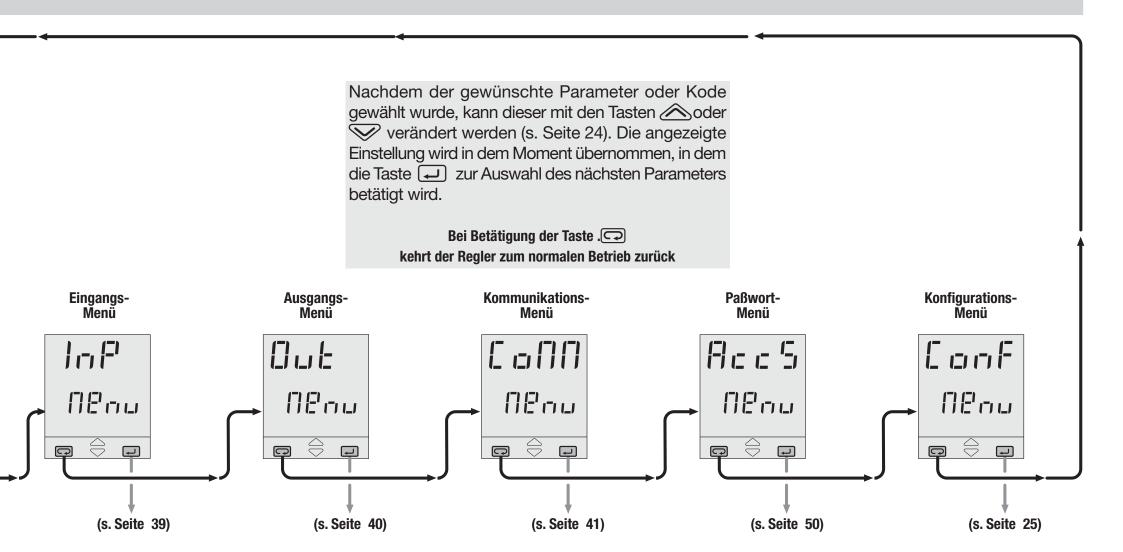
Für Alarme, die nicht auf LBA konfiguriert sind, kann der Parameter "danb" programmiert werden


Einstellungen:

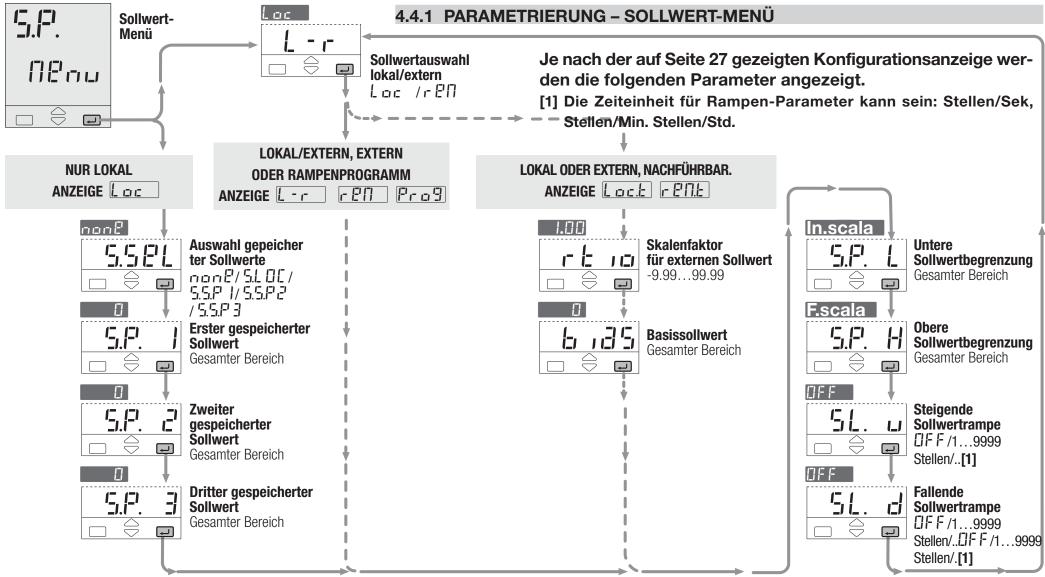
- Der Alarmstatus wird beibehalten, wenn ein Fühlerbruch auftritt;
- Bei Fühlerbruch wird kein Alarm ausgelösst. Nachdem der Sensor ausgewechselt wurde, wird der gültige Alarmstatus wieder hergestellt, bis der nächste Fühlerbruch auftritt.

ALARME MIT LBA-(MEßKREIS OFFEN)

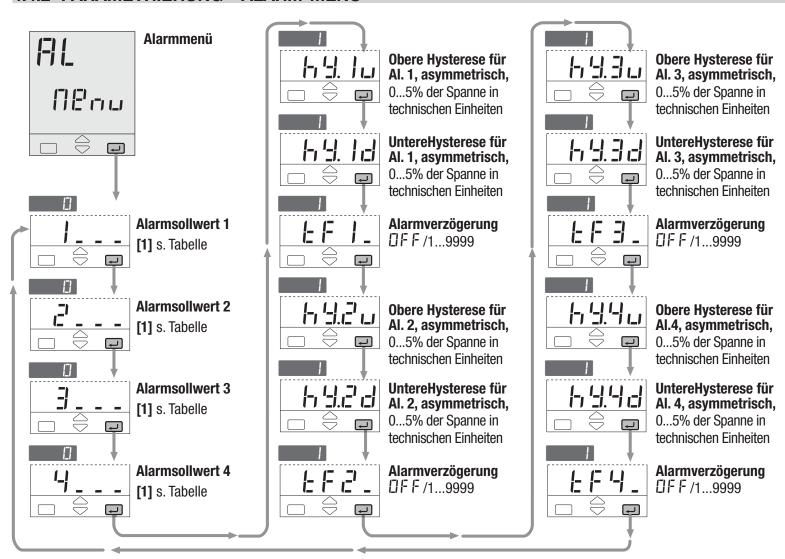

Wenn der Regler eine Unterbrechung in den Eingangsoder Ausgangsleitungen feststellt, wird nach einer einstellbaren Zeitspanne von 1... 9999 Sekunden der Alarm AL1 ausgelöst (s. Seite 37). Der Alarm wird blinkend angezeigt und verlischt, wenn der Fehlerzustand nicht mehr besteht. Dieser Alarmzustand wird durch eine rote LED sowie eine blinkende PV-Anzeige gemeldet.



Für Ein/Aus-Regelungen ist dieser Alarm nicht verfügbar.

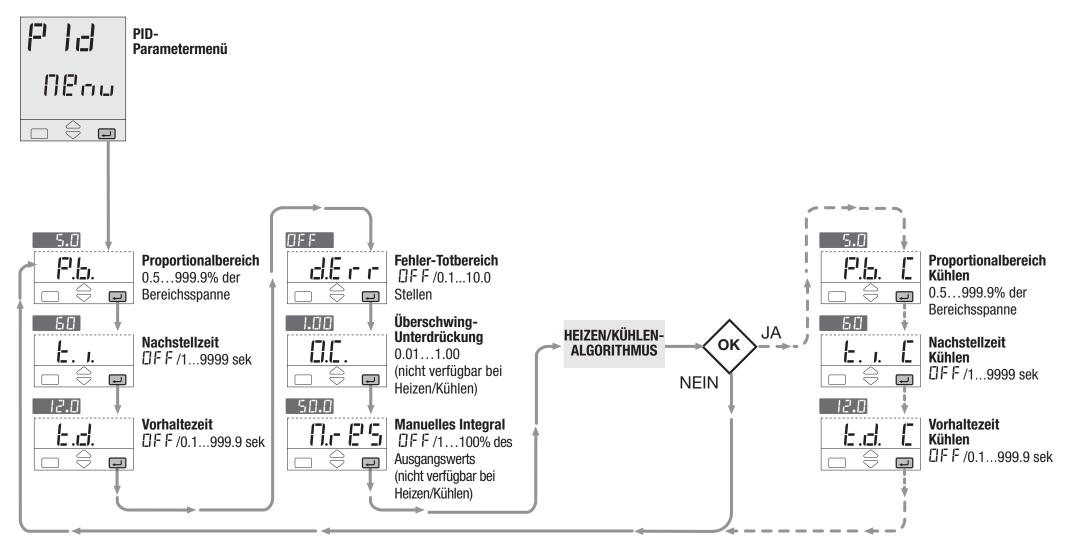

4 - Bedienung

4.4 PARAMETEREINSTELLUNG - PARAMETERMENÜ

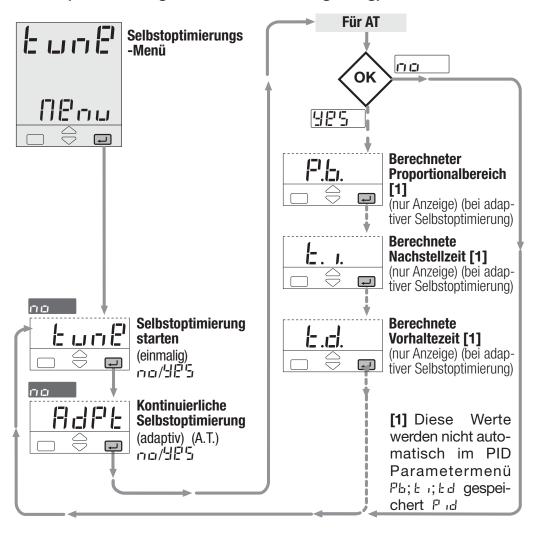


4 - Bedienung

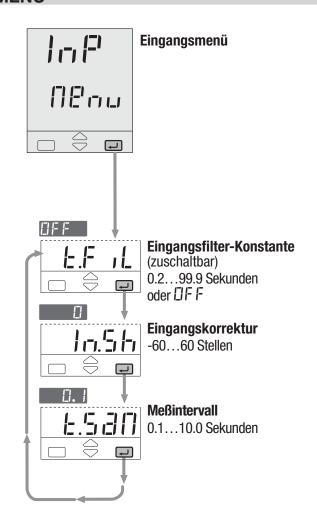
4.4.2 PARAMETRIERUNG – ALARM-MENÜ



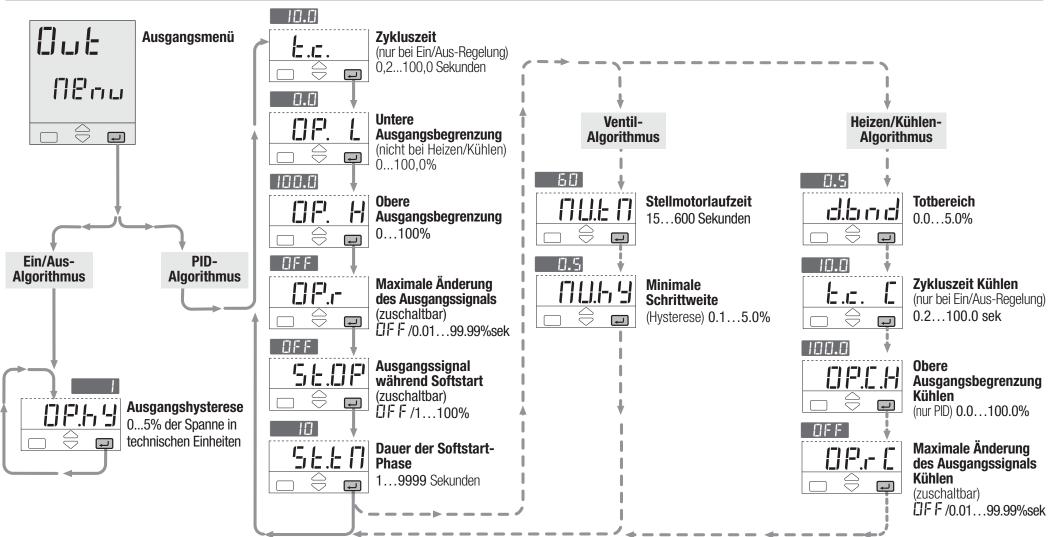
[1] Entsprechend der vorgenommenen Konfiguration wird ein Kode für Nummer und Typ des Alarms angezeigt (s. Seite 31). Je nach Alarmart ist der entsprechende Sollwert einzugeben wie aus der folgenden Tabelle ersichtlich.

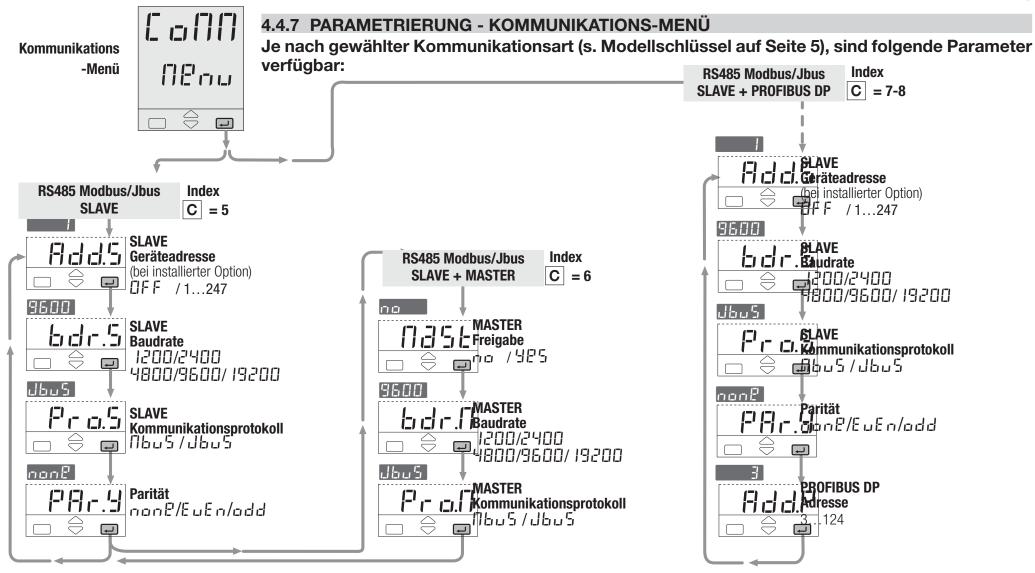

Art und Wert	Arbeitsweise	Nr. and Param.
Absolut Gesamter Bereich	Vollbereichs m a x i m a - lalarm	_ F 5.H
	Vollbereichs m i n i m a - lalarm	
Abweichung Gesamter Bereich	Abweichung smaxima- lalarm	_ dE.H
	Abweichung sminima- lalarm	_ d 8.L
Abweichungsb ereich Gesamter Bereich	außerhalb	_ 6-1-1
Meßkreis offen 19999 sek	Ob. Grenzwert	_ L 6 a

4 - Bedienung


4.4.3 PARAMETRIERUNG - PID-MENÜ (wird bei Ein/AUS-Regelung nicht angezeigt)

4.4.4 PARAMETRIERUNG SELBSTOPTIMIERUNGS-MENÜ (nicht verfügbar bei Ein/Aus-Regelung)



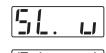

4.4.5 PARAMETRIERUNG – EINGANGS-MENÜ

4 - Bedienung

4.4.6 PARAMETRIERUNG – AUSGANGS-MENÜ

4.5 PARAMETERBESCHREIBUNG

Der einfacheren Bedienung halber sind die Parameter entsprechend ihrer Funktionalität in Menüs angeordnet.


4.5.1 SOLLWERT-MENÜ

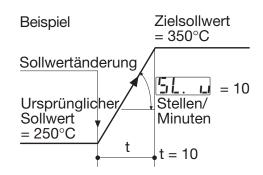
5.5. [_

Untere Sollwertbegrenzung Obere Sollwertbegrenzung

Oberer und unterer Grenzwert für den Sollwert.

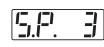
Die Spanne zwischen diesen Grenzwerten muß mindestens 100 Stellen betragen.

Steigende Sollwertrampe Fallende Sollwertrampe

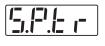

Dieser Parameter definiert die maximale Geschwindigkeit, mit der sich der Sollwert ändern kann, ausgedrückt in Einheiten/Sekunde, Einheiten /Minute oder Einheiten /Stunde (siehe Seite 27).

In der Einstellung (DFF) ist die Funktion abgeschaltet, und der neue Sollwert wird unmit-

telbar übernommen, anderenfalls erfolgt die Änderung mit der konfigurierten Geschwindigkeit.


Der neue Sollwert wird als "Zielsollwert" bezeichnet. Er kann als Parameter [£.5.7]. abgerufen werden (s. Bedienungsablauf Seite 53).

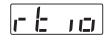
In Verbindung mit dem externen Sollwert sollten die Parameter 51. und 51. d bei Bedarf auf 0FF 9858626 werden.



Erster gespeicherter Sollwert Zweiter gespeicherter Sollwert Dritter gespeicherter Sollwert

Dies sind die Werte der drei Sollwerte, die über die digitalen Eingänge, Kommunikation oder Tastatur angewählt werden können. Der aktive Sollwert wird durch die grünen LEDs \$1, \$2 oder \$3 angezeigt.

S. auch 56.

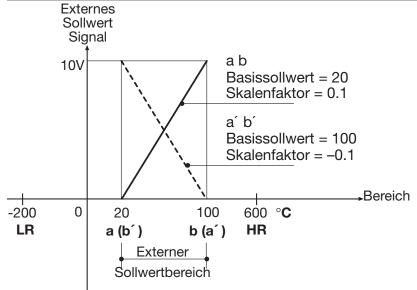

Nachführung gespeicherter Sollwerte

(s. Abschnitt 4.3.2, Seite 27) Für die gespeicherten Sollwerte kann zwischen zwei Betriebsarten. gewählt werden:

A- Standby | ric

Der gespeicherte Sollwert ist aktiv, solange der entsprechende Befehl ansteht. Ist der Befehl nicht mehr aktiv, kehrt der Regler zum lokalen Sollwert zurück.

B- Nachführung 485 Nachdem der gespeicherte Sollwert aktiviert wurde, bleibt er aktiv. Der vorherige lokale Sollwert bleibt nicht erhalten.


Skalenfaktor für externen Sollwert

Ratio (SKALENFAKTOR) ist der Faktor. mit dem Eingangssollwert multipliziert der den wird. externen Sollwertbereich in Relation zum Eingangsbereich definiert.

Basissollwert

Bias (Offst, Basissollwert) bestimmt den Beginn des externen Sollwertbereiches, der dem ext. analogen kleinsten Eingangsstrom (oder der kleinsten Spannung) entspricht.

Beispiel für "Bias" und "Ratio" eines externen Sollwertes

= Istwert

Unterer Grenzwert (Meßbereichsanfang)

= Oberer Grenzwert (Meßbereichsende)

= Externer Sollwert a(a) = SR Anfangswert

b (b') = SR Endwert

4.5.1 SOLLWERT-MENÜ

SR Anfangswert ist **kleiner** als der Endwert (jeweils in techn. Einheiten):

$$5 \cdot 135 = Anfangswert = a$$

$$r = \frac{b-a}{HR-LR}$$

Beispiel:

$$\frac{100 - 20}{600 - (-200)} = \frac{80}{800} = 0.1$$

SR Anfangswert ist **größer** als der Endwert (jeweils in techn. Einheiten):

$$b = 35 = Anfangswert = a'$$

$$r + i \sigma = \frac{b' - a'}{HR - LR}$$

Beispiel:

$$\frac{20 - 100}{600 - (-200)} = \frac{-80}{800} = -0.1$$

Sollwert (SP) als Kombination aus lokalem Sollwert (SL) und externem Sollwertsignal

Sollwert-Type L ac.t (Tab. 3, Seite 27)

Sollwert-Type - E'17.E

(Tab. 3, Seite 27)

SIGN = Prozentualer Anteil des externen Signales

SPAN = HR-LR

$$REM = \frac{SIGN * SPAN}{100}$$

Beispiele:

Interner Sollwert (SL) mit ext. Trim und Multiplikationsfaktor

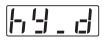
1/10:

Sollwert-Type = L ac.E

Externer Sollwert (SR) mit int. Trim und Multiplikationsfaktor 1/5:

Externer Sollwert – Bereich entspricht dem Eingangsbereich: Sollwert-Type = Lac.

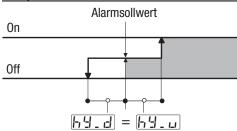
$$5L = 0$$


4.5.2 ALARM-MENÜ

(s. auch Seiten 32 und 33)

Obere

Alarmhysterese, asymmetrisch



Untere

Alarmhysterese,

asymmetrisch

Beispiel: Vollbereichsmaximalalarm

Die Hysterese kann auf 0 bis 5% der Spanne (in technischen Einheiten) eingestellt werden, z. B.:

Bereich = -200...600°C

Spanne = 800° C

Max Hysterese

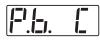
= 800° 5%= 40°C

Um eine symmetrische Hysterese zu erhalten, stellen Sie [] = [] = [] ein.

Alarmverzögerung

Zeitverzögerung für die Alarmaktivierung.

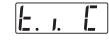
[IF F: Alarm sofort aktiv]


1...9999: Alarm nur dann aktiv, wenn der Zustand die eingestellte Zeit dauert.

4.5.3 PID-PARAMETERMENÜ

Nicht verfügbar bei Ein/Aus-Regelung

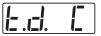
Proportionalbereich



Proportionalbereich Kühlen

Innerhalb des
Proportionalbereichs bewirkt
eine Regelabweichung SP - PV
ein Ausgangssignal, das proportional zu dieser
Regelabweichung ist.

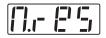
Nachstellzeit ti



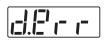
Nachstellzeit/ Kühlen tic

Die Nachstellzeit ist die Zeit, die benötigt wird, um die durch den P-Anteil resultierende bleibende Regelabweichung auf Null zurückzuführen. In der Einstellung [IFF] ist das D-Verhalten abgeschaltet.

Vorhaltezeit td


Vorhaltezeit Kühlen tdc

Das D-Verhalten bewirkt ein Signal, das proportional zur Änderungsgeschwindigkeit des Eingangssignals ist. In der Einstellung @FF ist das D-Verhalten abgeschaltet.


(Automatisch ausgeschaltet, wenn Adaptiv-Tune läuft)
Je kleiner der Wert für diesen Parameter (1,00—>0.01) um so stärker wird das Überschwingen bei einer Änderung des Sollwerts reduziert, ohne das PID-Regelverhalten zu beeinflußen.
Bei einer Einstellung von 1,00 ist die Überschwing-Unterdrückung nicht aktiv.

4.5.3 PID-MENÜ (Fortsetzung)

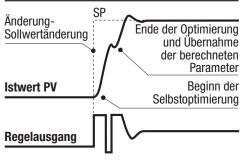
Manuelles Integral

Bei einer Regelung ohne I-Verhalten (PD-Regelung) bestimmt das manuelle Integral den Ausgangswert, wenn PV = SP ist.

Fehler-Totbereich

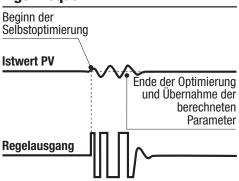
Innerhalb dieses Bereichs (PV - SP) wird das Ausgangssignal nicht verändert, um das Stellglied zu schonen (Standby-Ausgang)

4.5.4 SELBSTOPTIMIERUNGS-MENÜ (keine Anzeige bei Ein/Aus-Regelung)


S. auch Seite 57

Dieser Regler verfügt über zwei Arten der Selbstoptimierung:

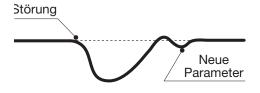
- Eine einmalig ausgeführte Selbstoptimierung
- Eine adaptive (lernfähige)
 Selbstoptimierung


Die Selbstoptimierung ermittelt durch Beobachtung des Regelverhaltens bei Störungen die bestmögliche Einstellung für die PID-Parameter. Dieser Regler verfügt über zwei Arten der Selbstoptimierung, die automatisch anhand der Prozeßbedingungen beim Aufrufen der Selbstoptimierung gewählt werden:

Verhalten bei schrittweiser

Diese Methode eignet sich besonders, wenn der Prozeßwert bei Beginn der Selbstoptimierung mehr als 5% der Bereichsspanne vom Sollwert entfernt ist. Sie bietet eine hohe Geschwindigkeit bei recht guter Annäherung an die optimalen Parametereinstellungen.

Eigenfrequenz

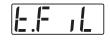


Diese Methode bietet sich an, wenn der Prozeßwert nahe dem Sollwert ist. Sie bietet den Vorteil einer höheren Genauigkeit, benötigt jedoch etwas länger zur Ausführung.

Das Fuzzy-Tuning wählt automatisch aus, welche dieser beiden Methoden zur Berechnung der optimalen Werte für die PID-Parameter eingesetzt werden.

Die adaptive Selbstoptimierung bringt während der gesamten Berechnungsphase der PID-Parameter keine Störungen in den Prozeß ein.

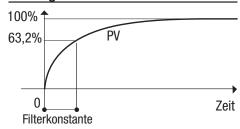
Adaptive Selbstoptimierung


Sie eignet sich inbesondere für Prozesse, deren Verhalten sich über die Zeit ändert oder deren Verhalten sich bei unterschiedlichen Sollwerten nichtlinear verändert.

Für die Selbstoptimierung ist kein Bedienereingriff erforderlich. Sie ist einfach und genau: die Funktion analysiert kontinuierlich die Prozeßreaktion auf Störungen und bestimmt Frequenz und Amplitude der Signale. Basierend auf diesen Werten und gespeicherten statistischen Daten werden die PID-Parameter dann automatisch modifiziert.

Sie eignet sich inbesondere für Prozesse, deren Verhalten sich über die Zeit ändert oder deren Verhalten sich bei unterschiedlichen Sollwerten nichtlinear verändert.

Wenn die adaptive Selbstoptimierung beim Abschalten der Spannungsversorgung aktiv war, werden die Einstellungen der PID-Parameter gespeichert und beim erneuten Einschalten des Reglers wieder aktiviert.

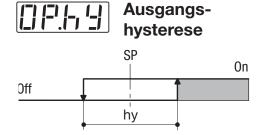

4.5.5 EINGANGSMENÜ

Eingangsfilter-Konstante

Zeitkonstante des RC-Filters in Sekunden, der auf den Eingang angewendet wird. In der Einstellung $\square FF$ ist diese Funktion abgeschaltet.

Wirkung des Filters

Eingangskor-rektur

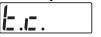

Ein hier eingegebener Wert wird zum Eingangssignal addiert und verschiebt den gesamten Eingangsbereich um diesen Wert (±60 Stellen).

6.530

Meßintervall

Das Meßintervall wird in Sekunden angegeben. Dieser Parameter wird üblicherweise bei langsamen Prozessen verwendet, um das Meßintervall über einen Bereich von 0,1 bis 10 Sekunden an den Prozeß anzupassen.

4.5.6 AUSGANGSMENÜ


Die Hysterese kann auf 0 bis 5% der Spanne (in technischen Einheiten) eingestellt werden.

Beispiel

Bereich = -200...600°C

Spanne = 800° C

Max. Hysterese = 800° 5% = 40°C

Zykluszeitv

Zykluszeit Kühlen

Innerhalb der Zykluszeit moduliert der Regelalgorithmus die Ein- und Ausschaltzeiten des Regelausgangs. Das Verhältnis dieser beiden Zeiten entspricht dem Ausgangssignal in Prozent, die Summe beider Zeiten der Zykluszeit.

Untere Ausgangsbegrenzung

Gibt den kleinsten Wert an, den der Regelausgang annehmen kann. Diese Begrenzung ist auch im Handbetrieb aktiv.

Obere Ausgangsbegrenzung

Obere Ausgangs-

begrenzung Kühlen

Gibt den maximalen Wert an, den der Regelausgang annehmen kann. Diese Begrenzung ist auch im Handbetrieb aktiv.

Maximale Änderung des

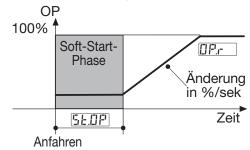
Ausgangssignals Heizen

Maximale Änderung des

Ausgangssignals Kühlen

Dieser in %/Sekunden ausgedrückte Wert gibt an, um wieviel

Prozent sich das Ausgangssignal pro Sekunde ändern darf. Der Einstellbereich beträgt 0,01 bis 99,99%/Sekunde. In der Einstellung []FF ist diese Funktion abgeschaltet.


Ausgangssignal beim Softstart

Dieser Parameter gibt den Wert ab, den der Regelausgang während der Softstart-Phase annimmt.

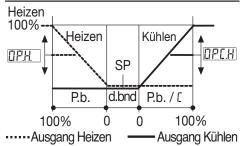
Dauer der Softstart-Phase

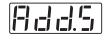
Dieser Parameter gibt die Zeit ab dem Einschalten an, während der das Ausgangssignal auf dem Softstart-Wert gehalten wird.

Stellmotorlaufzeit

Dieser Parameter definiert die Zeit, die der Stellantrieb (Servomotor) zum Durchlaufen des gesamten Stellweges (0 bis 100%) benötigt.

Minimale Schrittweite

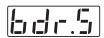

Positions-Auflösung oder Totbereich des Stellantriebs/Servomotors.


Totbereich Heizen/Kühlen

Dieser Parameter spezifiziert die Breite des Totbereichs zwischen Heizen- und Kühlen-Seite.

Heizen/Kühlen-Algorithmus

4.5.7 KOMMUNIKATIONS-MENÜ (OPTION)



SLAVE Geräteadresse - 1...247

SLAVE Profibus DP-Adresse -3...124

Alle an einen Bus angeschlossenen Geräte müssen unterschiedliche Geräteadressen haben. In der Einstellung [] F F ist die serielle Kommunikation nicht aktiv.

SLAVE Baudrate

MASTER Baudrate

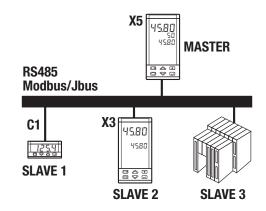
Die Baudrate kann von 1200 bis 19.200 baud eingestellt werden.bit/sek.

Parität

Gleich E Li E n oder ungleich Li Li Li einstellbar.

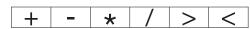
Mit der Einstellung nan E keine Parität

Für die serielle Kommunikation stehen drei Optionen zur Verfügung:


A - Modbus/Jbus SLAVE

Mit diesem Protokoll können Parameterwerte gelesen und verändert werden (wo vorgesehen).

B - Modbus/Jbus MASTER mit Mathematik-Paket


Dieses Protokoll erlaubt des Senden und Abfragen von Daten aller angeschlossenen Geräte, die als Modbus/Jbus SLAVE arbeiten (auch SPS).

Das Mathematik-Paket kann auch zur Verarbeitung von Daten eingesetzt werden, die über die serielle Kommunikation empfangen wurden.

Der MASTER (X5) empfängt die Prozeßvariablen von zwei Geräten (SLAVE 1, C1 und SLAVE 2, X3), vergleicht diese und gibt den größeren Wert an SLAVE 3 (SPS) aus.

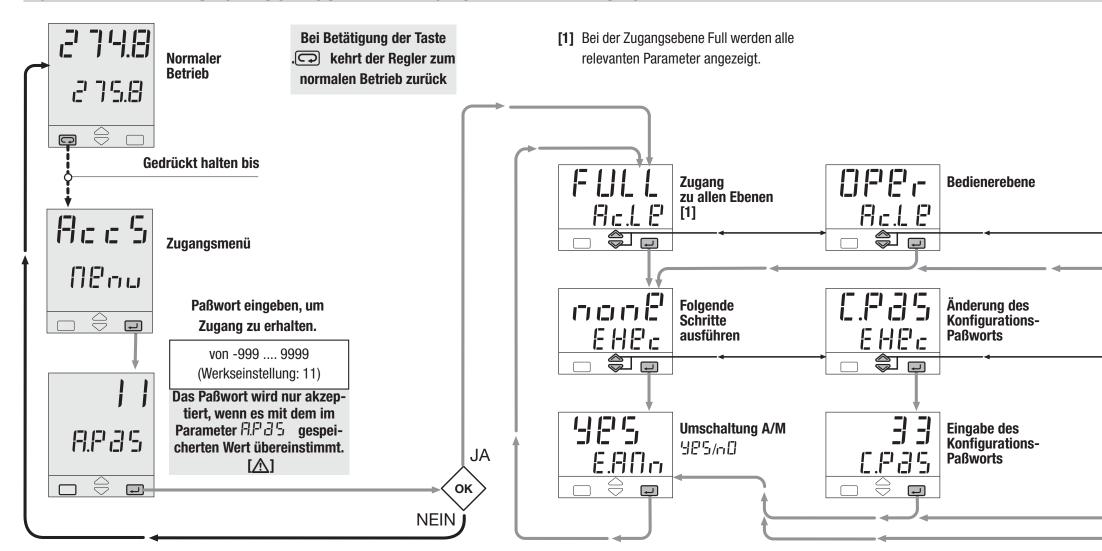
Verfügbare Operationen sind:

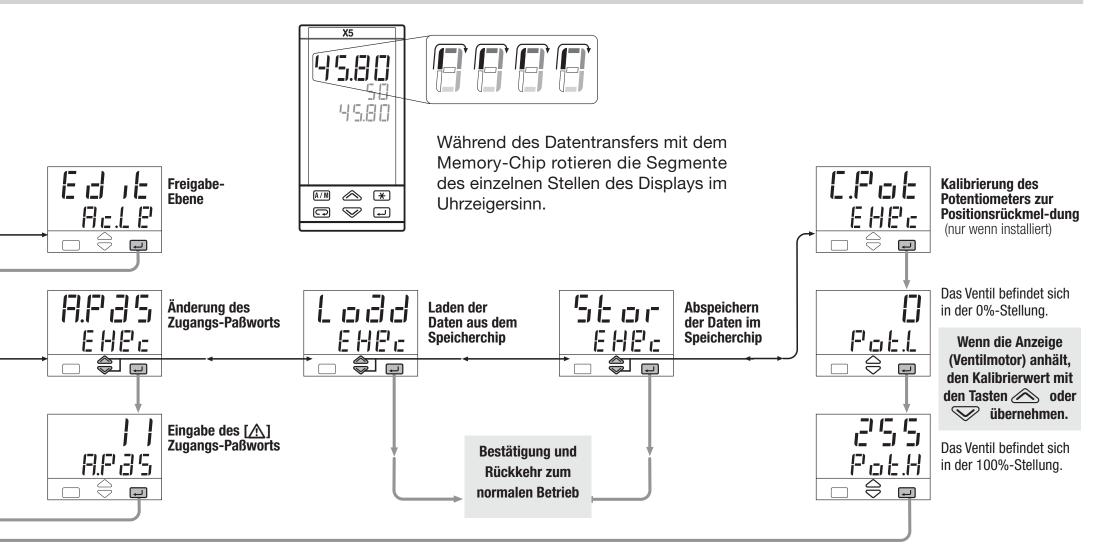
Zur Definition der Funktionen dieser Option ist Konfigurationssoftware erforderlich (s. separate Anleitung).

C - PROFIBUS DP SLAVE

(Process Field bus protocol)

PROFIBUS ist ein Standard zur Vernetzung und Anbindung von Peripheriegeräten an Maschinen im industriellen Umfeld.


Das in diesem Regler installierte Protokoll bietet gegenüber einfacheren Implementierungen dieses Standards folgende Vorzüge:


- Hohe Übertragungsrate
 Bis zu 12 Mbps, mit galvanischer Trennung.
- Konfigurierbare Parameterliste für den Transfer (Profildatei).

Über Konfigurationssoftware einstellbar (s. separate Anleitung)

4 - Bedienung

4.6 PARAMETRIERUNG - ZUGANGSEBENE - PAßWORT - KALIBRIERUNG

4 - Bedienung

4.6 PARAMETRIERUNG - ZUGANGSEBENE - PAßWORT - KALIBRIERUNG

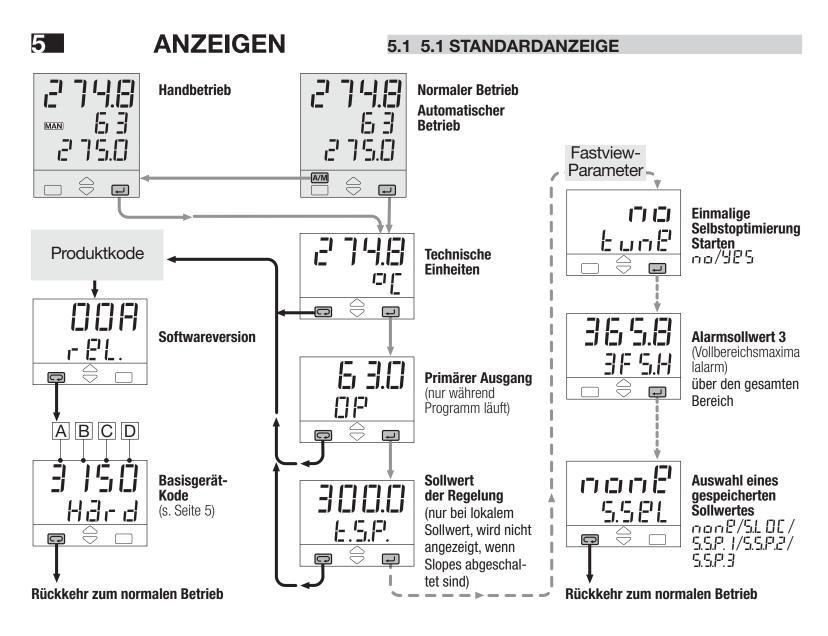
In der Freigabe-Ebene wird definiert, welche Gruppen und Parameter für den Bediener in normalen Betrieb zugänglich sind.

Nach Aufruf der Freigabeebene und Eingabe des entsprechenden Paßworts kann das Parameter-Menü aufgerufen werden. Anstelle eines numerischen Werts für den Parameter wird der Zugangsstatus angezeigt.

Mit den Tasten und wie kann die Zuordnung wie gewünscht geändert werden.

Parametergruppe	Kode	Zugangsebene
F 1:-1	r 2 3 d	Wird angezeigt
47) 47)	Hide	Wird nicht angezeigt

Parametergruppe	Kode	Zugangsebene
35.0	8 16-	Anzeige und Änderung möglich
-7 -3.1.7 -7 -1.1.7 	F 85E	Erscheint in der "Kurzübersicht"
	- 83d	Nur Anzeige, keine Änderung
	HIJE	Keine Anzeige, keine Änderung


Parameter, die der Zugangsebene Fille zugeordnet sind, können über die Übersichtsfunktion (s. Abschnitt 5.2 Seite 53) angezeigt werden. Bis zu 10 Parameter können dieser Zugangsebene zugewiesen werden

Wenn alle Parameter der gewählten Gruppe durchlaufen wurden, verläßt der Regler automatisch die Freigabe-Ebene.

Die Freigabe-Ebene muß für alle weiteren Parametergruppen aufgerufen werden, die freigegeben oder gesperrt werden sollen.

Die Zugangsebene für Gruppen und Parameter wird wie folgt aufgerufen:

5.2 "KURZÜBERSICHT" (Verkürzte, schnelle Parameterübersicht)

Bei der Kurzübersicht können bis zu 10 Parameter einfach und schnell angezeigt und verändert werden, ohne die Menüstruktur der einzelnen Parametergruppen zu durchlaufen

(s.Abschnitt 4.6, Seite 52).

Zur Änderung der Parameter die Tasten auch und drücken. Die neue Einstellung muß mit der Taste ubestätigt werden.

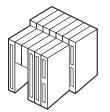
Ein Beispiel für eine Parameterliste des Fastview-Menüs ist links gezeigt.

6 - Eingaben und befehle

6 EINGABEN UND BEFEHLE

STEUERUNG DES REGLERS UND FUNKTIONSABLÄUFE

Der Regler kann auf verschiedene Weisen gesteuert werden:


6.1 EINGABEN ÜBER DIE TASTATUR

siehe Seite 55

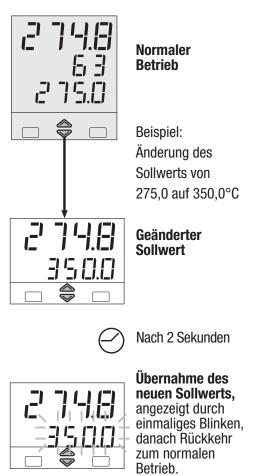
- Änderung des Sollwerts
- Automatik/Handbetrieb
- Auswahl lokaler/externer Sollwert
- Auswahl gespeicherter Sollwerte
- Selbstoptimierung Start / Stop
- Start/Stop eines Programms (siehe Seite 66)

6.2 STEUERUNG ÜBER DEN LOGIKEINGANG

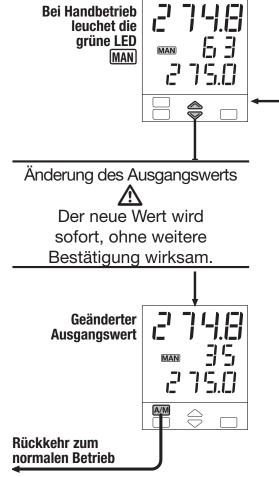
siehe Seite 58

6.3 STEUERUNG ÜBER DIE SERIELLE SCHNITTSTELLE

Bitte in der separaten Anleitung zur seriellen Schnittstelle nachlesen.

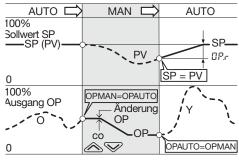

6.1 EINGABEN ÜBER DIE TASTATUR

6.1.1 ÄNDERUNG DES SOLLWERTS

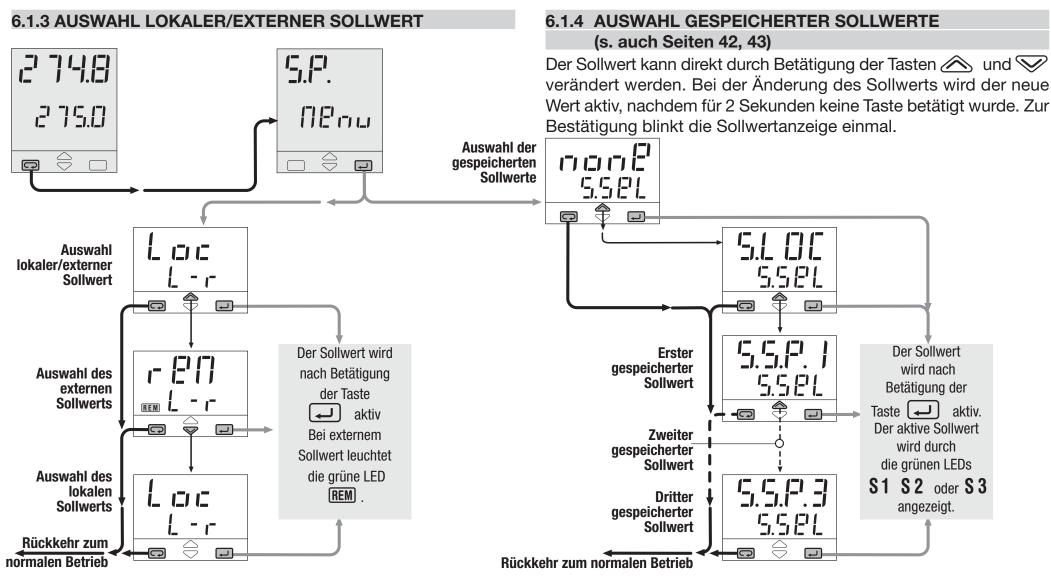

Der Sollwert kann direkt durch Betätigung der Tasten wurd verändert werden.

Bei der Änderung des Sollwerts wird der neue Wert aktiv, nachdem für 2 Sekunden keine Taste betätigt wurde.

Zur Bestätigung blinkt die Sollwertanzeige einmal.


6.1.2 AUTOMATIK/HANDBETRIEB

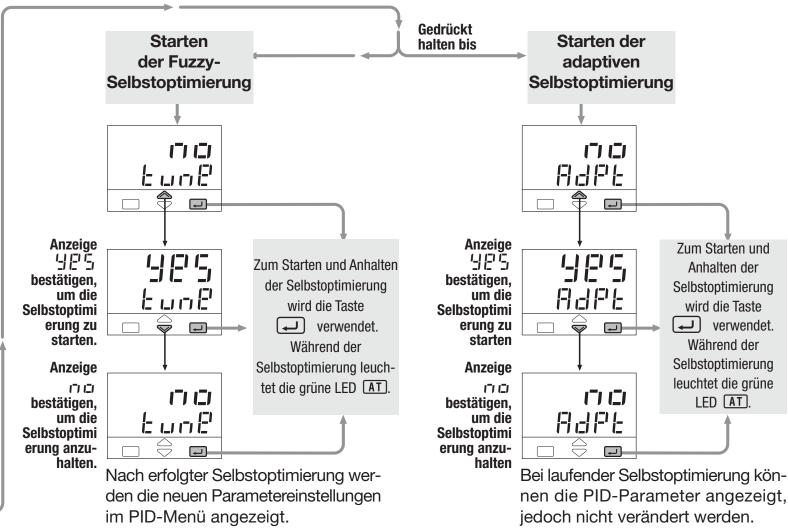
Normaler Betrieb (automatisch)


Die Umschaltung zwischen den Betriebsarten erfolgt in beiden Richtungen stoßfrei.

275.0

ABei einem Ausfall der Spannungsversorgung bleiben der AUTO/MAN-Status sowie der Ausgangswert erhalten.

6 - Eingaben und befehle



6.1.5 SELBSTOPTIMIERUNG START / STOP

Dieser Regler verfügt über zwei verschiedene Arten der Selbstoptimierung:

- Einmalig ausgeführte Selbstoptimierung zur Berechnung der optimalen Einstellung der PID-Parameter.
- Adaptive Selbstoptimierung zur kontinuierlichen Berechnung der PID-Parameter.

6 - Eingaben und befehle

6.2 STEUERUNG ÜBER DIGITALE EINGÄNGE

Bei der Konfiguration kann den Eingängen IL1, IL2 und IL3 jeweils eine Funktion zugeordnet werden (s. Parametereinstellung in Tabelle 10, Seite 30).

Die konfigurierte Funktion wird ausgeführt, der wenn Logikeingang (über einen potentialfreien Kontakt oder Open-Collector-Ausgang) geschlossen wird. Beim Öffnen des Kontakts am Eingangs wird die entsprechende Funktion abgeschaltet. Wenn eine Funktion über den Logikeingang aktiviert wird, hat dies Priorität vor Eingaben über die Tastatur oder Befehlen, die über die Schnittstelle gesendet werden.

6.2.1 SOLLWERT-BEZOGENE FUNKTIONEN DER DIGITALEN EINGÄNGE

Zugeordnete	Parameterwert	Status des Eingangs		Approviding		
Funktion	Parameterwert	Aus	Ein	Anmerkung		
Keine		_	_	Nicht verwendet		
Umschaltung auf Handbetrieb	8.030	Automatisch	Handbetrieb			
Sperren der Tastatur	EEE.	Nicht gesperrt	Gesperrt	Auch bei gesperrter Tastatur nimmt der Regler Befehle über den Logikeingang und die serielle Schnittstelle an.		
Istwert PV halten		Normale Arbeitsweise	Istwert PV wird gehalten	Der Istwert PV wird mit dem Wert "gespeichert", den er beim Schließen des Kontakts am Logikeingang hatte.		
Sollwertgradient sperren	510.1	Sollwertgradien ten sind aktiv	Normale Arbeitsweise	Bei geschlossenem Kontakt am Eingang wird der Sollwert sprunghaft geändert.		
Konstantes Ausgangssignal	F.D.L	Normaler Ausgang	Konstantes Ausgangssignal	Beim Status ON wird das Ausgangssignal auf dem vorgegebenen Wert konstant gehalten (s. Seite 28).		
Anwahl des ersten gespeicherten Sollwerts	5.6.	Lokal	Erster Sollwert	Bei permanent geschlossenem Kontakt wird der gewählte Sollwert ohne Möglichkeit zur Änderung des Sollwerts aktiviert.		
Anwahl des zweiten gespeicherten Sollwerts	5.6. 3	Lokal	Zweiter Sollwert	Bei kurzem Kontaktschluß wird der Sollwert aktiviert und kann anschließend verändert werden. Wenn mehr als ein Logikeingang zur Anwahl		
Anwahl des dritten gespeicherten Sollwerts	5.6. 3	Lokal	dritter Sollwert	von Sollwerten verwendet wird, legt der zuletzt geschlossene Kontakt den Sollwert fest. (siehe Seite 43)		
Umschaltung auf externen Sollwert	[Lokal	Extern			
Blocking neu aktiviert	6LcE	_	Blocking neu aktiviert	Die Sperrfunktion beim Einschalten (blocking) wird beim Schließen des digitalen Eingangs aktiv		

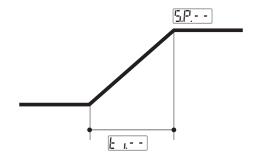
7

RAMPENPROGRAMM FUNKTION

EINFÜHRUNG

Wenn die Rampenprogramm-Option (Mod. X5-3... 4) installiert ist, stehen bis zu 4 Programme zur Verfügung.

ALLGEMEINE MERKMALE


- 4 Programme mit max. 16 Segmenten
- Start, Stop und Halten des Programms über die Tastatur
- Zeitbasis in Sekunden, Minuten oder Stunden
- Kontinuierliche Ausführung oder 1 bis 9999 Wiederholungen des Programms
- Zwei digitale Ausgänge (OP3 and OP4) mit dem Programm verknüpfbar.
- Maximal zulässige Abweichung vom Sollwert programmierbar.

7.1 AUFBAU DES PROGRAMMS

Ein Rampenprogramm besteht aus einer Abfolge von Segmenten.

Für jedes Segment kann definiert werden:

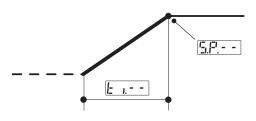
- der zu erreichende sollwert 5.P. immer
 die Dauer E. .. vorhanden
- der Status des Ausgangs OP3

Ein Programm besteht aus:

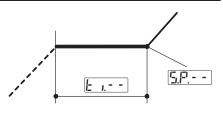
- 1 Startsegment mit der Bezeichnung []
- 1 Endesegment mit der Bezeichnung F
- 1 bis 14 normale Segmente

Startsegment - []

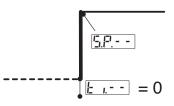
Zweck des Startsegments ist es, den Istwert auf einen definierten Wert zu bringen, bevor das Programm gefahren wird.


Endsegment - F

Das Endesegment definiert den Istwert, der bei Ende des Programms erreicht sein soll und der gehalten wird, bis der Sollwert geändert wird.


Normale Segmente - - - -

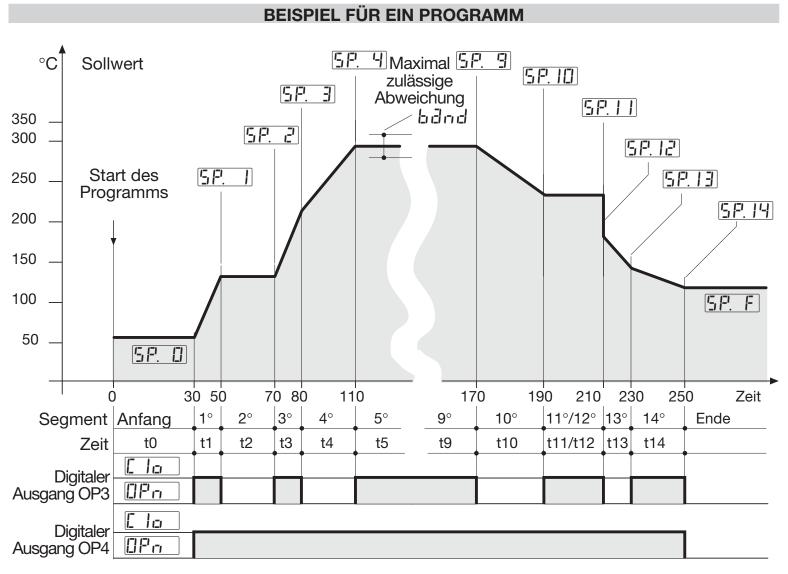
Das Profil des Programms entsteht aus den normalen Segmenten, die drei Formen annehmen können:


Rampensegmente

Haltesegmente

Sprungsegmente

5.P. = Zielsollwert

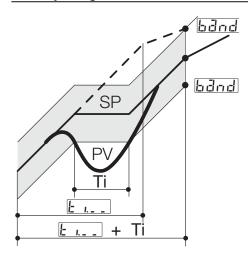

اء ا Dauer

--- = Vorhergehendes Segment

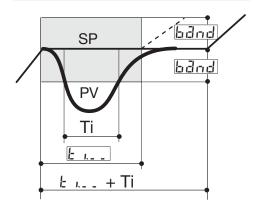
= Aktuelles Segment

— = Nachfolgendes Segment

7 - Rampenprogramm-Funktion


7.2 ARBEITSWEISE

7.2.1 MAXIMAL ZULÄSSIGE ABWEICHUNG (band)


Sollte der Istwert PV eine gegebene Abweichung vom Sollwert überschreiten, wird die Segmentdauer um die Zeit verlängert, für die der Istwert die zulässige Abweichung überschreitet. Diese Abweichung wird im Programm definiert. Die tatsächliche Segmentdauer ergibt sich aus £ 1.-- +Ti

DES PROGRAMMS

A. Rampensegment

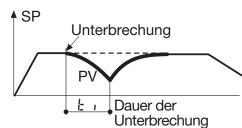
B. Haltesegment

7.2.2 WIEDERAUFNAHME DES PROGRAMMS NACH EINEM AUSFALL DER SPANNUNGSVERSORGUNG

Das Verhalten des Reglers nach einem Ausfall der Spannungsversorgung wird durch den Parameter Fall definiert (s. Seite 62), der drei Werte annehmen kann:

[| Fortsetzen

Rücksetzen

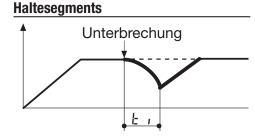

Rampe

In der Einstellung [[[[] []]]]

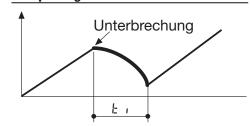
Das Programm wird dort fort-

gesetzt, wo es unterbrochen wurde.

Alle Parameter wie Sollwert und verbleibende Segmentzeit werden auf die Werte unmittelbar vor dem Spannungsausfall gesetzt.

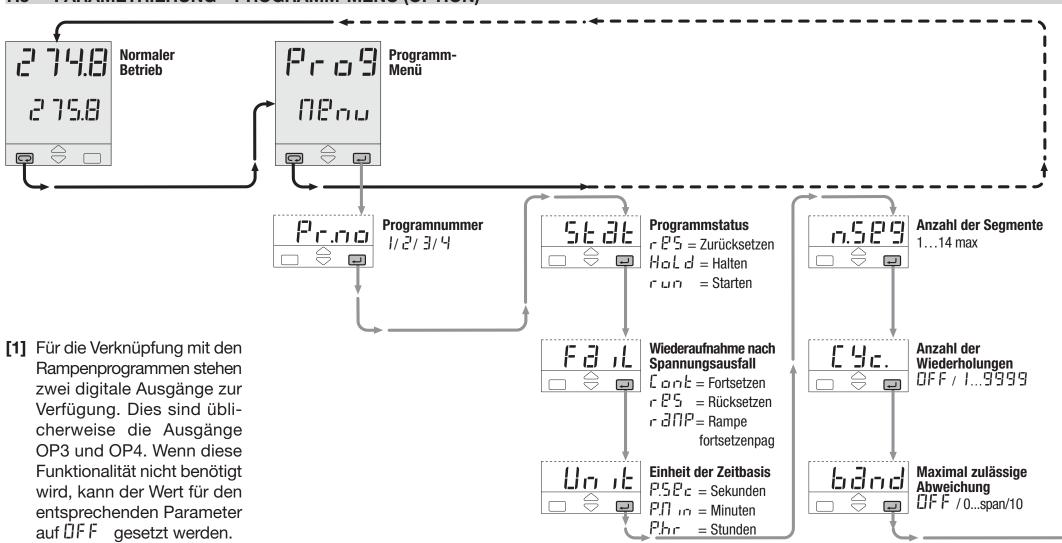

In der Einstellung 🕝 🗀 🗒

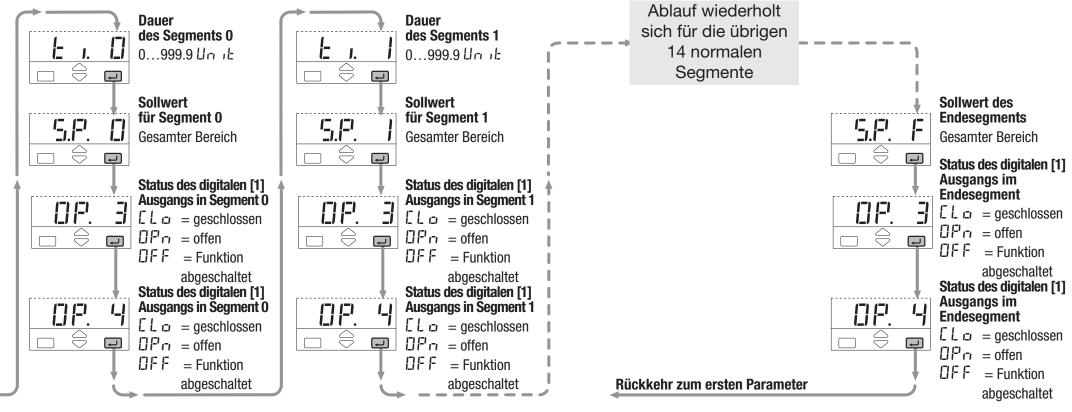
Das Programm ist beendet, der Regler arbeitet in der normalen Betriebsart (lokal)


In der Einstellung []

Das Programm wird dort fortgesetzt, wo es unterbrochen wurde. Der Istwert PV wird wieder mit der Rampensteigung auf den Sollwert geführt, die das Segment vor dem Ausfall der Spannungsversorgung hatte.

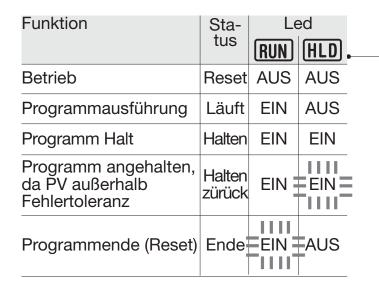
Unterbrechung während eines

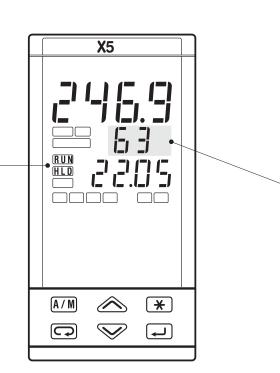



Unterbrechung während eines Rampensegments

7 - Rampenprogramm-Funktion

7.3 PARAMETRIERUNG – PROGRAMM-MENÜ (OPTION)





7 - Rampenprogramm-Funktion

7.4 ANZEIGE DES PROGRAMMSTATUS

Betriebsart und Status des Programms werden durch die LEDs RUN und HLD wie aus der folgenden Tabelle ersichtlich:

Bei laufendem Programm werden in 3-Sekundenintervallen abwechselnd anzeigt:

- Nummer des laufenden Programms
- Nummer des aktuellen Segments und dessen Status

Der Ausgangwert kann auch während der Programmausführung wie auf Seite 53 beschrieben angezeigt werden.

Nummer des laufenden Programms (Programm Nr. 3)

alle 3 Sekunden: **aktuelles Segment und dessen Status**

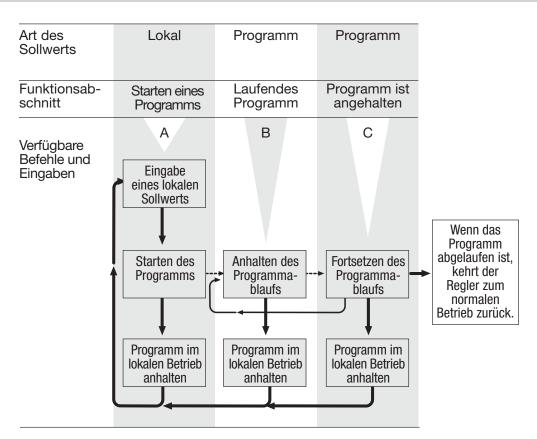
(Segment n°12)

- steigende Rampe

(Segment n°12)

- fallende Rampe

(Segment n°12) - Haltesegment


(Endesegment)
Programmende

7.5 PROGRAMM STARTEN/ANHALTEN

Die verfügbaren Befehle und Eingabemöglichkeiten sind von den Funktionsabschnitten des Reglers abhängig, die wie folgt unterschieden werden:

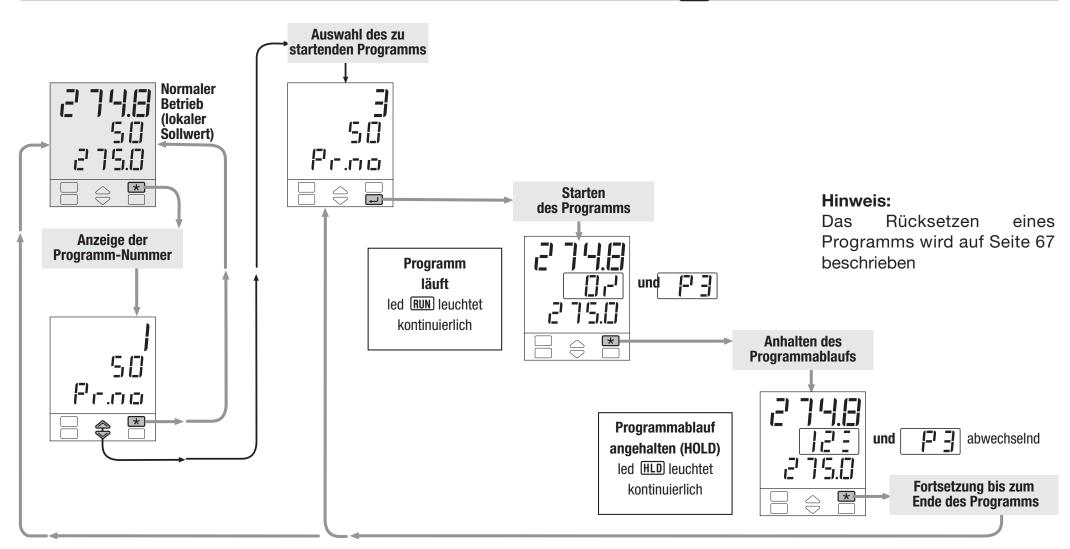
- A] Normaler Betrieb mit lokalem Sollwert
- B] Während der Ausführung eines Programms
- C]Bei angehaltenem Programm

Verfügbare Befehle in den einzelnen Funktionsabschnitten

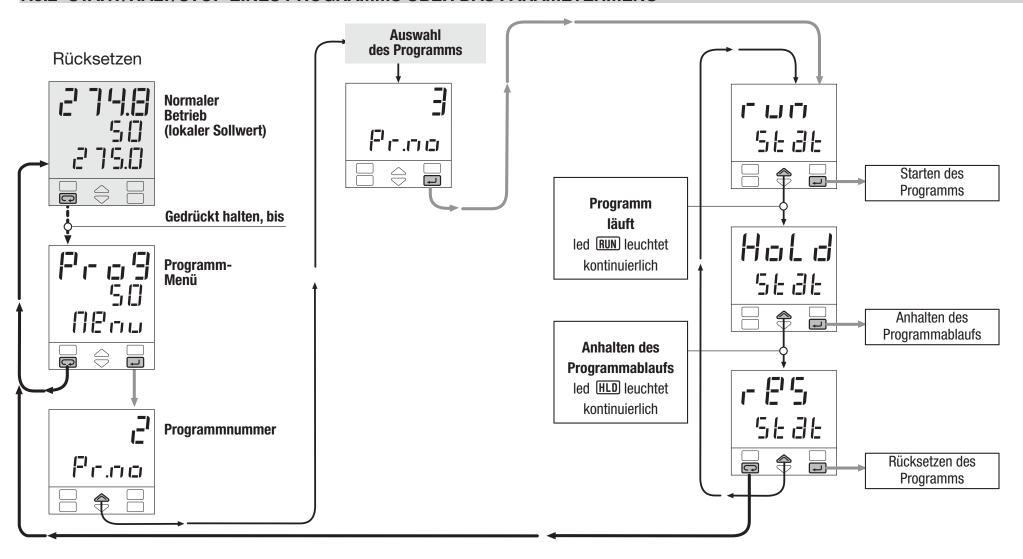
Zum besseren Verständnis sind die verschiedenen Funktionsabschnitte der Reihe nach dargestellt.

Zum Starten und Anhalten des Programmes gibt es zwei Möglichkeiten:

Direkt mit der Taste **


(siehe Seite 66)

Über das Parametermenü


(siehe Seite 67)

7 - Rampenprogramm-Funktion

7.5.1 START/STOP DES PROGRAMMS IM DIREKTEN BETRIEB MIT DER TASTE *

7.5.2 START/HALT/STOP EINES PROGRAMMS ÜBER DAS PARAMETERMENÜ

7 - Rampenprogramm-Funktion

7.5.3 RAMPENPROGRAMM-BEZOGENE FUNKTIONEN DER DIGITALEN EINGÄNGE (OPTION)

Zugeordnete Funktion	Parameterwert	Status des Eingangs		Anmerkung	
Zageoranete i anktion	arameterwert	Aus	Ein	Authoritaring	
Keine	OFF	_	_	Nicht verwendet	
Umschaltung auf Handbetrieb	8.025	Automatisch	Handbetrieb		
Sperren der Tastatur	EEE.I	Nicht gesperrt	Gesperrt	Auch bei gesperrter Tastatur nimmt der Regler Befehle über den Logikeingang und die serielle Schnittstelle an	
Istwert PV halten	[-].F' [_]	Normale Arbeitsweise	Istwert PV wird gehalten	Der Istwert PV wird mit dem Wert "gespeichert", den er beim Schließen des Kontakts am Logikeingang hatte	
Sollwertgradient sperren	5L a. 1	Sollwertgradienten sind aktiv	Normale Arbeitsweise	Bei geschlossenem Kontakt am Eingang wird der Sollwert sprunghaft geändert	
Konstantes Ausgangssignal	F.D.LE	Normaler Betrieb	Konstanten Wert ausgeben	Beim Status ON des digitalen Eingangs wird der Ausgang auf einen konstanten Wert gesetzt (s. Seite 28)	
Anwahl des ersten Programms	F-9.1	Lokal	Erstes Programm		
Anwahl des zweiten Programms	P - 9.2	Lokal	Zweites Programm	Das gewünschte Programm wird durch permanenten	
Anwahl des dritten Programms	Pr 9.3	Lokal	Drittes Programm	Kontaktschluß des digitalen Eingangs gewählt	
Anwahl des ierten Programms	F-9.4	Lokal	Viertes Programm		
Programm Start/Halten	rH.	HOLD	RUN	Beim Status ON des digitalen Eingangs wird das Programm bis zum Ende ausgeführt, beim Status OFF wird es auf Halten gesetzt	
Rücksetzen des Programms	r 5 £	Normaler Betrieb	Rücksetzen des Programms	Beim Status ON wird das Programm zurückgesetzt und die Regelung erfolgt nach dem lokalen Sollwert	
Blocking neu aktiviert	6LcE	_	Blocking neu aktiviert	Die Sperrfunktion beim Einschalten (blocking) wird beim Schließen des digitalen Eingangs aktiv	
Nächsten Segment	nEHE	_	Sprung zum nächsten Segment	Programm sprung zum nächsten Segment, den er beim Schließen des Kontakts am Logikeingang hatte	

TECHNISCHE DATEN

Spezifikationen (bei 25°C)	Beschreibung							
Frei konfigurierbar (siehe Abschnitt 4.3,	Einstellbar sind:	- -	- Art und Arbeitsweise der Alarme - Regelparameter					
Seite 25)	- Eingangsart	-	- Ausgan	gsart ·	- Zugangsebenen			
	Gemeinsame Merkmale	A/D-Wandler mit einer Aufle Meßintervall: 50 ms Ausgangsaktualisierungs-lr Korrektur des Eingangssigr Eingangsfilter: 0.199.9 Se						
	Genauigkeit	$0.25\% \pm 1$ Stelle (für Temp $0.1\% \pm 1$ Stelle (für mA un		ıfnehmer)	Von 100240Vac ist der Fehler zu vernachlässigen			
Prozeßeingang PV	Widerstandsthermometer (für[Δ T: R1+R2 müssen zusammen <320 Ω sein)	Pt100Ω bei 0°C (IEC 751) Wahlweise °C oder °F		2 oder 3 Drahtanschluß Brucherkennung (in beliebiger Kombination)	Leitungswiderstand 20Ω max. (3-Draht) Eingangsdrift: 0.1° C/ 10° C Umgebungstemperatur $< 0.1^{\circ}$ C / 10Ω] Leitungswiderstand			
(siehe Seiten 13,14 und Seite 26)	Thermoelemente	L, J, T, K, S, R, B, N, E, W3, W5 (IEC 584) Rj >10M Ω Wahlweise °C oder °F		Interne Kaltstellenkompensation Fehler 1°C/20°C ±0,5°C Brucherkennung	Leitungswiderstand: 150Ω max Eingangsdrift: <2μV/°C. Umgebungstemperatur <5μV / 10Ω Leitungswiderstand			
	Gleichstrom	420mA, 020mA Rj =	=30Ω	Brucherkennung. In technischen				
	Gleichspannung	0 50mV 0 300mV Ri >10MO		Einheiten mit einstellbarer Dezimalstelle	Eingangsdrift:<0.1% / 20°C			
	alcionopannung	15, 05, 010V Rj>		Nullpunkt -9999999 Endwert -9999999	Umgebungstemperatur: <5μV/10Ω Leitungswiderstand			
	Frequenz (Option) 02,000 / 020,000Hz	Low-Pegel ≤2V High-Pegel 424V		(Spanne: 100 Stellen min.)				

8 - Technische Daten

Spezifikationen (bei 25°C)	Beschreibung									
Hilfseingänge	Externer Sollwerteingang nicht galvanisch	$\begin{array}{ll} \text{Gleichstrom} \\ \text{O/420mA} & \text{Rj} = 30\Omega \end{array}$		Basissollwert in technischen Einheiten, ± Meßspanne – Skalenfaktor von -9,99+99,99						
	getrennt	Gleichspannung $\%$ 15, 05, 010V $Rj = 300k\Omega$				externer Sollw				
	Potentiometer	von 100 Ω $$ b	ois 10k Ω		Ventilposition	ns-Rückmeldu	ing			
Digitale Eingänge	Schließen eines externen Kontakts kann folgende	Umschaltung Sollwerten,	g automatisch Sperren der Ta	ier/Handbetri astatur, Haltei	eb, Auswahl d n des Istwerts	les lokalen/ex s, Sperren der	ternen Sollw Sollwertgrad	ertes, Abrufe lienten und k	n von 2 gespei onstantes Aus	cherten gangssignal
3 Logikeingänge	Funktionen auslösen:	Programm S	Programm Start/Stop(wenn Option installiert ist)							
			Regela	usgang	Alarm	Alarm	Alarm	Alarm	Analoga	nusgang
		Eine	Primär (Heizen)	Sekundär (Kühlen)	AL1	AL2	AL3	AL4	PV /	/ SP
			0P1			0P2	0P3	0P4	0P5	0P6
		Regelzone	Relais/Triac			Relais/Triac	Relais	Relais	Analog/Digital	Analog/Digital
	1 Regelkreis		0P5		0P1	0P2	0P3	0P4		0P6
	(PID oder		Analog/Digital		Relais/Triac	Relais/Triac	Relais	Relais		Analog/Digital
Betriebsarten und	Èin/Aus) mit		0P1	0P2			0P3	0P4	0P5	OP6
Ausgänge	einer oder zwei		Relais/Triac	Relais/Triac			Relais	Relais	Analog/Digital	Analog/Digital
Ausgunge	Regelzonen und		0P1	0P5		0P2	0P3	0P4		0P6
	1, 2, 3 oder 4	Regelzonen	Relais/Triac	Analog/Digital		Relais/Triac	Relais	Relais		Analog/Digital
	Alarmen	(Heizen/	0P5	0P2	0P1		OP3	0P4		0P6
		Kühlen)	Analog/Digital	Relais/Triac	Relais/Triac		Relais	Relais		Analog/Digital
			0P5	0P6	0P1	OP2	OP3	0P4		
			Analog/Digital		Relais/Triac	Relais/Triac	Relais	Relais		
		Ventilregelung	OP1	OP2			OP3	OP4	OP5	OP6
			Relais/Triac	Relais/Triac			Relais	Relais	Analog/Digital	Analog/Digital

Spezifikationen (bei 25°C)	Beschreibung							
	Regelalgorithmus	für Ventile, zur Ansteuerung von Servomotoren						
	Proportionalbereich (P)	0.5999.9%						
	Nachstellzeit (I)	19999 Sekunden						
	Vorhaltezeit (D)	0.1999.9 Sekunden	Abschaltbar					
	Fehler-Totbereich	0.110.0 Stellen						
	Überschwingunterdrückung	0.011.00						
	Manuelles Integral	0100%		PID-Algorithmus				
	Zykluszeit (nur zeitproportional)	0.2100.0 Sekunden		für eine Regelzone				
	Unt./Ob. Ausgangsbegrenzung	0100% separat einstellbar						
	Maximale Änderung des Regelausgangs	bei Softstart 1100% - Zeit 19999 Sekunden Abschalthar						
	Ausgangswert bei Softstart							
Regelart	Wert für Sicherheitsstellung	-100100%	Abstriatibal					
negelari	Konstantes Ausgangssignal	-100100%						
	Hysterese des Regelausgangs	05% der Spanne, in technischen Einheiten		Ein/Aus-Algorithmus				
	Totbereich	0.05.0%						
	Proportionalbereich Kühlen (P)	0.5999.9%						
	Nachstellzeit Kühlen (I)	19999 Sekunden	Ahechalthar	PID-Algorithmus				
	Vorhaltezeit Kühlen (D)	0.1999.9 Sekunden	Austrialibai	PiD-Algoritimus Heizen/Kühlen				
	Zykluszeit Kühlen (nur zeitproportional)	0.2100.0 Sekunden		Troizon/Ramon				
	Obere Ausgangsbegrenzung	0100%						
	Maximale Änderung des Regelausgangs (Kühlen)	0.0199.99%/Sekunden Abschaltbar						
	Stellzeit für vollen Hub	15600 Sekunden		DID Algorithmus für Ventile				
	Mindest-Schrittweite	0.15.0%		PID-Algorithmus für Ventile (Vergrößern, Stop, Verkleinern)				
	Potentiometer	100Ω10kΩ		(vergrobern, stop, verkieniern)				

8 - Technische Daten

Spezifikationen (bei 25°C)	Beschreibung								
Ausgänge OP1-OP2		Relais, einpoliger Schließer, 2A/250Vac (4A/120Vac) für ohmsche Lasten Triac, 1A/250Vac für ohmsche Lasten							
Ausgang OP3	Relais, einpoliger Wechsle	r 2A/250Vac (4A/120Vac) fü	ir ohmsche Lasten						
Ausgang OP4	Relais, einpoliger Schließe	r 2A/250Vac (4A/120Vac) fü	ir ohmsche Lasten						
Analoge/digitale Ausgänge OP5 und OP6 (Option)	Regelung oder analogausgang für PV/SP	Ω / 20mA max., 5V max. A max für Halbleiterrelais							
	Hysterese 05% der Spanne in technischen Einheiten								
	Arbeitsweise	Maximalalarm	Funktion	Abweichungsalarm	±Bereich				
		Minimalalarm		Abweichungsbereichs-Alarm	0Bereichsendwert				
Alarme AL1 - AL2 - AL3 und AL4				Grenzwert-Alarm	Gesamter Bereich				
		Sonderfunktion	Sensorbruch-, Heizungsbruch-Alarm						
			Mit Quittierung , Unterdrückung beim Anfahren						
			Mit Timer oder Programm verknüpft (wenn Option installiert ist) (nur OP3-OP4)						
	Lokal + 3 gespeicherte								
	Nur extern		Fallende und steigende Rampe						
Sollwert	Lokal und extern		0,1999,9 Stellen/min oder Stellen/Stunde (OFF=0)						
Oonwort	Lokal, nachführbar		Unt. Sollwertbegrenzung: von Bereichsminimum bis zur oberen Begrenzung						
	Extern, nachführbar	<u> </u>	Ob. Sollwertbegrenzung: von der unteren Begrenzung bis zum Bereichsmaximum						
	Programmierbar	(bei installierter Option)							

Spezifikationen (bei 25°C)	Beschreibung								
Rampenprogramm	4 Programme mit 16 Segm	enten (davon je ein Anfangs- und ein Endesegment) 1 bis 9999 Wiederholungen	oder kontinuierlich 🛭 F F						
(Option)		Zeitbasis einstellbar auf Sekunden, Minuten oder Sekunden Starten, Anhalten und Beenden über die Tastatur, Logikeingänge oder serielle Schnittstelle							
Calhatantimiamus	Art der Fuzzy-Optimierung automatisch die am besten	J. Der Regler wählt je nach Prozeßbedingungen geeignete Methode	Schrittmethode Eigenfrequenz-Methode						
Selbstoptimierung	Adaptive Selbstoptimieru und optimiert PID-Paramete	ng- selbstlernende, nicht in den Prozeß eingreifende Optimierung analysiert Proer kontinuierlich							
Handbetrieb	Integrierter Handsteller, sto	Bfreie Umschaltung Umschaltung über Tastatur, Logikeingang oder serielle Komi	munikation						
Serielle Kommunikation (Option)	RS485, MASTER Modbus/J	RS485, SLAVE Modbus/Jbus Protokoll, 1200, 2400, 4800, 9600 und 19.600 bps, 3-Drahtübertragung RS485, MASTER Modbus/Jbus Protokoll, 1200, 2400, 4800, 9600 und 19.600 bps, 3-Drahtübertragung RS485 asynchron, galv. getrennt, PROFIBUS DP Protokoll, einstellbar von 9600 bps bis 12MBps, max. Länge 100 m (bei 12 Mbps).							
Transmitterversorgung	+24Vac ±20%, 30mA max.	- zur Versorgung externer Aufnehmer							
	Prozeßeingang	Erkennung von Bereichsüberschreitung, Sensorbruch oder Kurzschluß mit automatischer Fehleranzeige und Setzen des Ausgangs auf Fehlersignal							
Betriebssicherheit	Regelausgang	Sicherheitsstellung und konstantes Ausgangssignal: -100%100%, separat einstellbar							
	Parameter	Alle Parametereinstellungen und Konfigurationsdaten werden in einem nicht-flüchtigen Speicher abgelegt.							
	Zugangssicherung	Zum Zugang zu Konfigurationsdaten und bestimmten Parametermenüs ist ein Pa	aßwort erforderlich. Fastview						
	Spannungsversorgung (abgesichert)	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	Leistungsaufnahme 5W max.						
	Sicherheit	EN61010 -1 (Installationsklasse 2 (2500V), Verunreinigungsklasse 2							
Allgemeine	EMV	Erfüllt die CE-Anforderungen (siehe Seite 2)							
Spezifikationen	Eindringschutz EN60529 (IEC529)	Front IP65							
	UL,cUL zertifiziert	File 1764152							
	Abmessungen	¹ / ₈ DIN - 48 x 96, Tiefe 110 mm, Gewicht 380 gr. max.							

GARANTIE

Wir garantieren, daß die Produkte frei von Material- und Verarbeitungsfehlern sind. Diese Garantie gilt für einen Zeitraum von 3 Jahren ab dem Lieferdatum. Diese Garantie bezieht sich nicht auf Fehler, die daraus entstehen, daß das Produkt nicht in Übereinstimmung mit den Anweisungen dieser Bedienungsanleitung eingesetzt wird.

I TABELLE DER SYMBOLE

Universal-Eingang Thermoelement Pt100 Widerstandsthermom eter (Pt100) Temperatur-Differenz (2xPt100) mA und mV Kundenspezifisch Hz Frequenz Zusätzliche Eingänge Stromwandler Fernsollwert mA Fernsollwert V POT. Rückmeldungs-Potentiometer

Digitale Eingänge Kontakt isoliert Transistor NPN offener Kollektor TTL offener Kollektor Sollwert Lokal Bereitschaft (Stand-by) Sperren der Tastatur Sperren der Ausgänge Anfahrfunktion Zeit-Funktion (Timer) Gespeichert MEM Fernsollwert Sollwert nach Programm

